Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71898
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorKai-Han Chengen
dc.contributor.author鄭楷翰zh_TW
dc.date.accessioned2021-06-17T06:14:03Z-
dc.date.available2023-10-02
dc.date.copyright2018-10-02
dc.date.issued2018
dc.date.submitted2018-09-25
dc.identifier.citation[1] P. Dudek, S. Szczepanski and J. V. Hatfield, 'A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line', IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240-247, 2000.
[2] J. Yu , F. F. Dai and R. C. Jaeger, 'A 12 bit Vernier ring time-to-digital converter in 0.13 m digital CMOS technology', IEEE J. Solid-State Circuits, vol. 45, pp. 830-842, 2010.
[3] M. Lee and A. A. Abidi, 'A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue', IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, 2008.
[4] A. Mäntyniemi, T. Rahkonen and J. Kostamovaara, 'A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method', IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3067-3078, 2009.
[5] J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park and J.-Y. Sim, 'A 300-ms/s, 1.76-ps-resolution, 10-b asynchronous pipelined time-to-digital converter with on-chip digital background calibration in 0.13 um CMOS', IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 516-526, 2013.
[6] S.-J. Kim, T. Kim, and H. Park, “A 0.63ps, 12b, synchronous cyclic TDC using a time adder for on-chip jitter measurement of a SoC in 28nm CMOS technology”, in VLSI Circuits Dig. Tech. Papers, Jun. 2014.
[7] S.-J. Kim, W. Kim, M. Song, J. Kim, T. Kim, and H. Park, “A 0.6 V 1.17 ps PVT-tolerant and synthesizable time-to-digital converter using stochastic phase interpolation with 16× spatial redundancy in 14 nm FinFET technology,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.
[8] M. Z. Straayer and M. H. Perrott, 'A multi-path gated ring oscillator TDC with first-order noise shaping', IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, 2009.
[9] A. Elshazly, S. Rao, B. Young and P. K. Hanumolu, 'A noise-shaping time-to-digital converter using switched-ring oscillators—Analysis, design, and measurement techniques', IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1184-1197, 2014.
[10] Y. Cao, W. D. Cock, M. Steyaert and P. Leroux, '1-1-1 MASH  time-to-digital converters with 6 ps resolution and third-order noise-shaping', IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2093-2106, 2012.
[11] W. Yu, K. Kim and S. Cho, 'A 0.22 ps rms integrated noise 15 MHz bandwidth fourth-order ΔΣ time-to-digital converter using time-domain error-feedback filter', IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1251-1262, 2015.
[12] K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, and T. Sakurai, “Managing sub-threshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS),” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 859–867, Apr. 2006.
[13] W. Yu, 'A 148 fsrms integrated noise 4 MHz bandwidth second-order ΔΣ time-to-digital converter with gated switched-ring oscillator', IEEE Trans. Circuits Syst. I, vol. 61, no. 8, pp. 2281-2289, 2014.
[14] C. K. Chang, Y. K. Tsai, K. H. Cheng, and L. H. Lu, 'A 0.3-V 7.6-fJ/conv-step delta-sigma time-to-digital converter with a gated-free ring oscillator,', IEEE International New Circuits and Systems Conference, pp. 221-224, June 2017.
[15] J. E. Gaitán-Pitre, M. Gasulla, and R. Pallàs-Areny, 'Analysis of a Direct Interface Circuit for Capacitive Sensors,' IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 2931-2937, Sep. 2009.
[16] T. Singh, T. Sæther, and T. Ytterdal, 'Current-Mode Capacitive Sensor Interface Circuit with Single-Ended to Differential Output Capability,' IEEE Trans. Instrum. Meas., vol. 58, no. 11, pp. 3914-3920, Nov. 2009.
[17] H. Ha, D. Sylvester, D. Blaauw, and J.-Y. Sim, 'A 160nW 63.9fJ/conversion-step capacitance-to-digital converter for ultra-low-power wireless sensor nodes,' in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014.
[18] B. Li, L. Sun, C.-T. Ko, A. K.-Y. Wong, and K.-P. Pun, 'A high-linearity capacitance-to-digital converter suppressing charge error from bottom-plate switches,' IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 41, no. 7, pp. 1928-1941, Jul. 2014.
[19] S. Oh, W. Jung, K. Yang, D. Blaauw, and D. Sylvester, '15.4b Incremental Sigma-Delta Capacitance-to-Digital Converter with Zoom-in 9b Asynchronous SAR,' in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2014.
[20] S. Oh et al., 'A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system,' IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1581-1591, Jul. 2015.
[21] W. Jung, S. Jeong, S. Oh, D. Sylvester, and D. Blaauw, 'A 0.7pF-to-10nF fully digital capacitance-to-digital converter using iterative delay-chain discharge,' in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015.
[22] H. Danneels, K. Coddens, and G. Gielen, 'A fully-digital, 0.3 V, 270 nW capacitive sensor interface without external references,' in IEEE Proc. ESSCIRC, Sep. 2011.
[23] J. H.-L. Lu , M. Inerowicz , S. Joo , J. K. Kwon and B. Jung, 'A low-power, wide-dynamic-range semi-digital universal sensor readout circuit using pulse width modulation', IEEE Sensors J., vol. 11, pp. 1134-1144, 2011.
[24] Z. Tan, R. Daamen, A. Humbert, Y. Ponomarev, Y. Chae and M. Pertijs, 'A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications', IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2469-2477, 2013.
[25] H. Ha, D. Sylvester, D. Blaauw and J. Sim, 'A 160 nW 63.9 fJ/conversion-step capacitance-to-digital converter for ultra-low-power wireless sensor nodes', IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 220-221.
[26] Y. He, Z. Chang, L. Pakula, S.-H Shalmany and M. Pertijs, ' A 0.05mm2 1V capacitance-to-digital converter based on period modulation', IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2016, pp. 486-487.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71898-
dc.description.abstract近年來,隨著互補式金屬氧化物半導體製程的不斷演進,下降的操作電壓使得類比電路的設計面臨更大的挑戰。從而,將訊號在時域上進行操作提供了一個可能的方向去解決問題。因此本論文使用了數種時域訊號處理的技巧,使用90奈米互補式金氧半製程來實做高能源效率的三角積分資料轉換器。首先,此研究透過免閘式環型震盪器來實現一個二階三角積分時間至數位轉換器,操作在 1.0 伏特的情況下,晶片功耗為 330 微瓦,並且在1 MHz的頻寬內有 11.3 位元的解析度,達到 0.25 pJ/c.-s. 的品質因數。進一步的,透過一個高線性度的電容至時間轉換電路來將時間至數位轉換器應用至電容感測介面電路,操作在 0.6 伏特的情況下,晶片功耗為 6.77 微瓦,此電路的輸入電容範圍為8皮法拉,並且在2 kHz的頻寬內有 11.2 位元的解析度,達到0.72 pJ/c.-s.的品質因數。zh_TW
dc.description.abstractIn recent years, as CMOS technology continues to advance, design of traditional analog circuits becomes more challenging due to the lower operation voltage. Thus, operating signals in time-domain paves a possible way to alleviate the problem. This thesis utilizes several time-mode signal processing techniques for energy efficient delta-sigma data converters. Fabricated in a 90-nm CMOS process, a second-order delta-sigma time-to-digital converter (TDC) which consumes 330 μW from a 1.0-V supply is realized with gated-free ring oscillators. This design demonstrates a resolution of 11.3 bits within 1-MHz signal bandwidth and achieves an FoM of 0.25 pJ/c.-s. Furthermore, a capacitance-to-digital converter (CDC) composed of a highly linear capacitance-to-time circuit and the proposed TDC is implemented. Consuming 6.77 μW from a 0.6-V supply, the CDC demonstrates a resolution of 11.2 bits in 2-kHz signal bandwidth. This design achieves an FoM of 0.72 pJ/c.-s. for an input capacitance range of 8 pF.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:14:03Z (GMT). No. of bitstreams: 1
ntu-107-R05943120-1.pdf: 2036503 bytes, checksum: dca2e0c6c94dba8bb095237dc7e51da8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2 Background 3
2.1 Applications 3
2.2 Performance metrics of TDC 5
2.2.1 Static performance 5
2.2.2 Dynamic performance 7
2.2.3 Counting rate and dead time 8
2.3 General TDC architecture 9
2.4 Delta-sigma TDC 14
Chapter 3 A Second-Order Delta-Sigma Time-to-Digital Converter Based on Gated-Free Ring Oscillators 23
3.1 Overview 23
3.2 Conventional gated ring oscillator TDC 24
3.3 Proposed delta-sigma TDC 26
3.4 Circuit implementation 29
3.4.1 Time register 29
3.4.2 Leakage suppression switches 31
3.4.3 Gated-free ring oscillator 32
3.4.4 Sequential search frequency calibration 34
3.4.5 Counters 36
3.5 Noise analysis 37
3.5.1 Quantization noise 37
3.5.2 Thermal noise 37
3.5.3 Estimated signal-to-noise ratio 38
3.6 Measurement results 39
3.7 Summary 46
Chapter 4 A Time-Mode Capacitive Sensor Interface with Second-Order Delta-Sigma Time-to-Digital Converter 47
4.1 Overview 47
4.2 Proposed capacitance-to-digital converter 49
4.2.1 Conventional capacitance-to-time circuit 49
4.2.2 Proposed capacitance-to-time circuit 52
4.3 Circuit implementation 54
4.3.1 Capacitance-to-time circuit 54
4.3.2 Time-to-digital converter 55
4.4 Noise analysis 56
4.4.1 Quantization noise 56
4.4.2 Thermal noise 57
4.4.3 Estimated signal-to-noise ratio 57
4.5 Measurement results 58
4.6 Summary 63
Chapter 5 Conclusion 65
References 67
dc.language.isoen
dc.subject三角積分zh_TW
dc.subject介面電路zh_TW
dc.subject時間數位轉換器zh_TW
dc.subject電容數位轉換器zh_TW
dc.subjectdelta sigmaen
dc.subjectTDCen
dc.subjectsensor interfaceen
dc.subjectCDCen
dc.title應用於電容感測之高能效三角積分時間數位轉換器zh_TW
dc.titleEnergy Efficient Delta-Sigma Time-to-Digital Converters for Capacitive Sensing Applicationsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林宗賢(Tsung-Hsien Lin),黃俊郎(Jiun-Lang Huang),郭建男(Chien-Nan Kuo)
dc.subject.keyword三角積分,時間數位轉換器,介面電路,電容數位轉換器,zh_TW
dc.subject.keyworddelta sigma,TDC,sensor interface,CDC,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201804135
dc.rights.note有償授權
dc.date.accepted2018-09-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved