請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71883完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 (Chih-Chung Yang) | |
| dc.contributor.author | Po-Yu Chen | en |
| dc.contributor.author | 陳柏宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:13:26Z | - |
| dc.date.available | 2020-11-13 | |
| dc.date.copyright | 2020-11-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-17 | |
| dc.identifier.citation | 1. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346-1348 (2010). 2. J. J. D. McKendry, D. Massoubre, S. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol. 30, 61-67 (2012). 3. J. M. Wun, C. W. Lin, W. Chen, J. K. Sheu, C. L. Lin, Y. L. Li, J. E. Bowers, J. W. Shi, J. Vinogradov, R. Kruglov, and O. Ziemann, “GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication,” IEEE Photon. J. 4, 1520-1529 (2012). 4. S. Zhang, S. Watson, J. J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31, 1211-1216 (2013). 5. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38, 3972-3974 (2013). 6. H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys. 93, 5978-5982 (2003). 7. H. W. Choi, C. W. Jeon, and M. D. Dawson, “Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique,” J. Cryst. Growth 268, 527-530 (2004). 8. H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84, 2253-2255 (2004). 9. Z. Gong, H. X. Zhang, E. Gu, C. Griffin, M. D. Dawson, V. Poher, G. Kennedy, P. M. W. French, and M. A. A. Neil, “Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output,” IEEE Transact. Electron Dev. 54, 2650-2658 (2007). 10. H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16, 9918-9926 (2008). 11. J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Dev. Lett. 29, 158-160 (2008). 12. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys. 107, 013103 (2010). 13. P. P. Maaskant, H. Shams, M. Akhter, W. Henry, M. J. Kappers, D. Zhu, C. J. Humphreys, and B. Corbett, “High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance,” Appl. Phys. Express 6, 022102 (2013). 14. C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Dev. Lett. 34, 611-613 (2013). 15. C. L. Liao, C. L. Ho, Y. F. Chang, C. H. Wu, and M. C. Wu, “High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth,” IEEE Electron Dev. Lett. 35, 563-565 (2014). 16. P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115, 033112 (2014). 17. P. Bhattacharya, Semiconductor Optoelectronic Devices (Prentice Hall International, Inc., 1997). 18. K. Ikeda, S. Horiuchi, T. Naka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optic communications,” IEEE Transac. Electron Dev. ED-24, 1001-1005 (1977). 19. R. J. Xie and N. Hirosaki, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101 (2007). 20. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2, 1268-1277 (2011). 21. H. Y. Lee, Y. C. Lin, I. H. Chen, and C. H. Chao, “Effective color conversion of GaN-based LEDs via coated phosphor layers,” IEEE Photon. Technol. Lett. 25, 764-767 (2013). 22. S. Nizamoglu, G. Zengin, and H. Volkan Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008). 23. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22, 602-606 (2010). 24. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22, 3076-3080 (2010). 25. C. T. Lee, C. J. Cheng, H. Y. Lee, Y. C. Chu, Y. H. Fang, C. H. Chao, and M. H. Wu, “Color conversion of GaN-based micro light-emitting diodes using quantum dots,” IEEE Photon. Technol. Lett. 27, 2296-2299 (2015). 26. C. Y. Liu, T. P. Chen, T. S. Kao, J. K. Huang, H. C. Kuo, Y. F. Chen, and C. Y. Chang, “Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes,” Opt. Express 24, 19978-19987 (2016). 27. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22, A511-A520 (2014). 28. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504-32515 (2015). 29. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8, 18189-18200 (2016). 30. G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic red/green/blue micro-LEDs with HBR and DBR structures,” IEEE Photon. Technol. Lett. 30, 262-265 (2018). 31. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011). 32. H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013). 33. Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22, A155-A166 (2014). 34. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014). 35. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015). 36. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205-213 (2010). 37. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cu, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979-1984 (2010). 38. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26, 23629-23640 (2018). 39. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44, 5691-5694 (2019). 40. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31, 095201 (2020). 41. Y. T. Wang, R. N. Wu, C. C. Ni, C. C. Lu, C. J. Cai, W. F. Tse, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells,” Opt. Express 28, 13352-13367 (2020). 42. A. F. Halbus, T. S. Horozov, and V. N. Paunov, “Surface-modified zinc oxide nanoparticles for antialgal and antiyeast applications,” ACS Appl. Nano Mater. 3, 440-451 (2020). 43. C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4, 334-341 (2008). 44. Y. Liu, Z. Wang, Y. Liu, G. Zhu, O. Jacobson, X. Fu, R. Bai, X. Lin, N. Lu, X. Yang, W. Fan, J. Song, Z. Wang, G. Yu, F. Zhang, H. Kalish, G. Niu, Z. Nie, and X. Chen, “Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors,” ACS Nano 11, 10539-10548 (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71883 | - |
| dc.description.abstract | 在本研究中,我們展示表面電漿子耦合可以提高量子點轉換光的調制頻寬。首先我們將綠光和紅光量子點與合成的銀奈米盤鏈接起來並鋪陳於藍光發光二極體上,經由表面電漿子耦合,所得光色轉換之綠光與紅光的調制頻寬都有顯著提升。當我們再於發光二極體上加上沉積的銀奈米顆粒,其表面電漿子共振可增強綠光及紅光量子點的吸收,綠光及紅光之調制頻寬更進一步提升。由於紅光量子點中的非輻射復合較弱,載子生命期較長,因此紅光的調制頻寬較綠光者要小。當樣品內同時存在紅光及綠光量子點而且它們靠得很近時,從綠光量子點到紅光量子點的能量轉移,包括遠場的發光再吸收以及近場的福斯特共振能量轉換,會導致綠光的調制頻寬提高而紅光的調制頻寬降低。表面電漿子耦合可以提升混合光的調制頻寬。 | zh_TW |
| dc.description.abstract | The enhancement of the modulation bandwidth of a quantum-dot (QD) based converted light through surface plasmon (SP) coupling is demonstrated. By linking green-emitting QD (GQD) and/or red-emitting QD (RQD) with a synthesized Ag nano-plate, which is designated as a GNP, on a blue-emitting light-emitting diode (LED), the modulation bandwidths of the converted green and red emissions are significantly increased through GNP-induced SP coupling. When deposited Ag nanoparticles (NPs), which are designated as BNPs for further inducing SP coupling and hence enhancing the absorptions of GQD and RQD, are added to the LED samples, the modulation bandwidths of green and red emissions are further increased. Because the non-radiative recombination in RQD is relatively weaker, the longer photoluminescence decay time of RQD results in a smaller modulation bandwidth of red emission, when compared with that of green emission from GQD. When both GQD and RQD exist and are closely spaced in a sample, the energy transfer processes of far-field emission-reabsorption and near-field Förster resonance energy transfer from GQD into RQD occur, leading to the increase (decrease) of the modulation bandwidth of green (red) emission. With SP coupling, the modulation bandwidth of a mixed light is significantly enhanced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:13:26Z (GMT). No. of bitstreams: 1 U0001-1510202014283600.pdf: 3131318 bytes, checksum: 6b2547cef9484054f3685e39838477bf (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Contents iv List of Figure v List of Table viii Chapter 1 Introduction 1 1.1 Modulation bandwidth of a light-emitting diode 1 1.2 Colloidal quantum dot for color conversion 2 1.3 Surface plasmon coupling effect 3 1.4 Research motivations 4 1.5 Thesis structure 5 Chapter 2 Device Sample Structures, Fabrication Procedures and Measurement Method 6 2.1 Device sample structures 6 2.2 Fabrication procedures 6 2.3 Measurement method of modulation bandwidth 10 Chapter 3 Characterization Results of Device Samples 20 3.1 Performances of light-emitting diodes with overlaid quantum dots 20 3.2 Performances of light-emitting diodes with overlaid synthesized Ag nanoparticles linked with quantum dots 21 3.3 Performances of light-emitting diodes with overlaid deposited Ag nanoparticles and synthesized Ag nanoparticles linked with quantum dots 21 Chapter 4 Discussions 39 4.1 Surface plasmon coupling effects on converted light intensities 39 4.2 Surface plasmon coupling effects on the modulation bandwidths of converted lights 40 Chapter 5 Conclusions 48 References 49 | |
| dc.language.iso | en | |
| dc.subject | 調制頻寬 | zh_TW |
| dc.subject | 表面電漿子共振 | zh_TW |
| dc.subject | 福斯特共振能量轉換 | zh_TW |
| dc.subject | FRET | en |
| dc.subject | Modulation bandwidth | en |
| dc.subject | Surface Plasmon Coupling | en |
| dc.title | 以表面電漿子耦合改善基於量子點光色轉換的調制行為 | zh_TW |
| dc.title | Improvement of the Modulation Behavior of a Quantum-dot-based Color-converted Light with Surface Plasmon Coupling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃建璋(Jian-Jang Huang),林建中(Chien-Chung Lin),陳奕君(I-Chun Cheng),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 表面電漿子共振,福斯特共振能量轉換,調制頻寬, | zh_TW |
| dc.subject.keyword | Surface Plasmon Coupling,FRET,Modulation bandwidth, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202004275 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-10-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1510202014283600.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
