Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金全
dc.contributor.authorTa-Wei Linen
dc.contributor.author林大為zh_TW
dc.date.accessioned2021-06-17T06:13:12Z-
dc.date.available2018-10-12
dc.date.copyright2018-10-12
dc.date.issued2018
dc.date.submitted2018-10-04
dc.identifier.citation1. Wilson, J. A.; Yoffe, A. D., The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics 1969, 18 (73), 193-335.
2. Frindt, R. F., Single Crystals of MoS2 Several Molecular Layers Thick. Journal of Applied Physics 1966, 37 (4), 1928-1929.
3. Joensen, P.; Frindt, R. F.; Morrison, S. R., Single-layer MoS2. Materials Research Bulletin 1986, 21 (4), 457-461.
4. Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H.-L.; Moshfegh, A. Z., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons 2018, 3 (2), 90-204.
5. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7 (4), 2898-2926.
6. Rao, C. N.; Matte, H. S.; Maitra, U., Graphene analogues of inorganic layered materials. Angew Chem Int Ed Engl 2013, 52 (50), 13162-13185.
7. Varoon, K.; Zhang, X.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y.; Cococcioni, M.; Francis, L. F.; McCormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M., Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334 (6052), 72-75.
8. Xu, M.; Liang, T.; Shi, M.; Chen, H., Graphene-Like Two-Dimensional Materials. Chemical Reviews 2013, 113 (5), 3766-3798.
9. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Accounts of Chemical Research 2015, 48 (1), 56-64.
10. Miro, P.; Audiffred, M.; Heine, T., An atlas of two-dimensional materials. Chem Soc Rev 2014, 43 (18), 6537-6554.
11. Zhang, X.; Lai, Z.; Tan, C.; Zhang, H., Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew Chem Int Ed Engl 2016, 55 (31), 8816-8838.
12. Kalantar-zadeh, K.; Ou, J. Z., Biosensors Based on Two-Dimensional MoS2. ACS Sensors 2016, 1 (1), 5-16.
13. Ge, J.; Ou, E.-C.; Yu, R.-Q.; Chu, X., A novel aptameric nanobiosensor based on the self-assembled DNA-MoS2 nanosheet architecture for biomolecule detection. Journal of Materials Chemistry B 2014, 2 (6), 625-628.
14. Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H., Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. Journal of the American Chemical Society 2013, 135 (16), 5998-6001.
15. Cao, X.; Tan, C.; Zhang, X.; Zhao, W.; Zhang, H., Solution‐Processed Two‐Dimensional Metal Dichalcogenide‐Based Nanomaterials for Energy Storage and Conversion. Advanced Materials 2016, 28 (29), 6167-6196.
16. Tang, Q.; Zhou, Z., Graphene-analogous low-dimensional materials. Progress in Materials Science 2013, 58 (8), 1244-1315.
17. Akhtar, M.; Anderson, G.; Zhao, R.; Alruqi, A.; Mroczkowska, J. E.; Sumanasekera, G.; Jasinski, J. B., Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications 2017, 1 (1), 5-39
18. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F., Emerging photoluminescence in monolayer MoS2. Nano Lett 2010, 10 (4), 1271-1275.
19. Komsa, H.-P.; Krasheninnikov, A. V., Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Physical Review B 2012, 86 (24), 241201.
20. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5, 263-275.
21. Mattheiss, L. F., Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B 1973, 8 (8), 3719-3740.
22. Fleischauer, P. D.; Lince, J. R.; Bertrand, P. A.; Bauer, R., Electronic structure and lubrication properties of molybdenum disulfide: a qualitative molecular orbital approach. Langmuir 1989, 5 (4), 1009-1015.
23. Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P., Structures and Phase Transition of a MoS2 Monolayer. The Journal of Physical Chemistry C 2014, 118 (3), 1515-1522.
24. Chen, X.; McDonald, A. R., Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv Mater 2016, 28 (27), 5738-5746.
25. Dong, H.; Tang, S.; Hao, Y.; Yu, H.; Dai, W.; Zhao, G.; Cao, Y.; Lu, H.; Zhang, X.; Ju, H., Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Applied Materials & Interfaces 2016, 8 (5), 3107-3114.
26. Zhang, X.; Lai, Z.; Liu, Z.; Tan, C.; Huang, Y.; Li, B.; Zhao, M.; Xie, L.; Huang, W.; Zhang, H., A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew Chem Int Ed Engl 2015, 54 (18), 5425-5428.
27. Liu, Q.; Hu, C.; Wang, X., A facile one-step method to produce MoS2 quantum dots as promising bio-imaging materials. RSC Advances 2016, 6 (30), 25605-25610.
28. Haldar, D.; Dinda, D.; Saha, S. K., High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives. Journal of Materials Chemistry C 2016, 4 (26), 6321-6326.
29. Yue, N.; Weicheng, J.; Rongguo, W.; Guomin, D.; Yifan, H., Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing. Journal of Materials Chemistry A 2016, 4 (21), 8198-8203.
30. Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y., A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging. Journal of Materials Chemistry B 2016, 4 (1), 27-31.
31. Bubnova, O., Light-emitting valleys. Nature Nanotechnology 2016,3(3),1560-1567.
32. Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G.; Cheng, L.; Liu, Z., Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Research 2016, 9 (10), 3003-3017.
33. Lin, H.; Wang, C.; Wu, J.; Xu, Z.; Huang, Y.; Zhang, C., Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry 2015, 39 (11), 8492-8497.
34. Gu, W.; Yan, Y.; Zhang, C.; Ding, C.; Xian, Y., One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Applied Materials & Interfaces 2016, 8 (18), 11272-11279.
35. Lin, T.; Wang, J.; Guo, L.; Fu, F., Fe3O4@MoS2 Core–Shell Composites: Preparation, Characterization, and Catalytic Application. The Journal of Physical Chemistry C 2015, 119 (24), 13658-13664.
36. Rao, C. N. R.; Gopalakrishnan, K.; Maitra, U., Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces 2015, 7 (15), 7809-7832.
37. Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H., 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv Mater 2016, 28 (10), 1917-1933.
38. Schmidt, H.; Giustiniano, F.; Eda, G., Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev 2015, 44 (21), 7715-7736.
39. Wang, T.; Zhu, R.; Zhuo, J.; Zhu, Z.; Shao, Y.; Li, M., Direct Detection of DNA below ppb Level Based on Thionin-Functionalized Layered MoS2 Electrochemical Sensors. Analytical Chemistry 2014, 86 (24), 12064-12069.
40. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. P., Ligand Conjugation of Chemically Exfoliated MoS2. Journal of the American Chemical Society 2013, 135 (12), 4584-4587.
41. Bertolazzi, S.; Bonacchi, S.; Nan, G.; Pershin, A.; Beljonne, D.; Samori, P., Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Adv Mater 2017, 29 (18).
42. Nguyen, E. P.; Carey, B. J.; Ou, J. Z.; van Embden, J.; Gaspera, E. D.; Chrimes, A. F.; Spencer, M. J.; Zhuiykov, S.; Kalantar-Zadeh, K.; Daeneke, T., Electronic Tuning of 2D MoS2 through Surface Functionalization. Adv Mater 2015, 27 (40), 6225-6229.
43. Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z.; Abramovic, I.; Vecera, P.; Halik, M.; Sanvito, S.; Duesberg, G. S.; Nicolosi, V.; Hauke, F.; Hirsch, A.; Coleman, J. N.; Backes, C., Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano 2015, 9 (6), 6018-6030.
44. Xu, B.; Su, Y.; Li, L.; Liu, R.; Lv, Y., Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensors and Actuators B: Chemical 2017, 246, 380-388.
45. Makarova, M.; Okawa, Y.; Aono, M., Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation. The Journal of Physical Chemistry C 2012, 116 (42), 22411-22416.
46. Cho, K.; Min, M.; Kim, T.-Y.; Jeong, H.; Pak, J.; Kim, J.-K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W.-K.; Lee, T., Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano 2015, 9 (8), 8044-8053.
47. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; Sun, Y.; Chen, X.; Zhong, W.; Du, Y., Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution. RSC Advances 2015, 5 (118), 97696-97701.
48. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials 2015, 25 (7), 1127-1136.
49. Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S., One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A 2015, 3 (20), 10693-10697.
50. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M., MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets. ACS Nano 2014, 8 (5), 5297-5303.
51. Sweet, C.; Pramanik, A.; Jones, S.; Ray, P. C., Two-Photon Fluorescent Molybdenum Disulfide Dots for Targeted Prostate Cancer Imaging in the Biological II Window. ACS Omega 2017, 2 (5), 1826-1835.
52. Wang, Y.; Ni, Y., Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection. Analytical Chemistry 2014, 86 (15), 7463-7470.
53. Dai, W.; Dong, H.; Fugetsu, B.; Cao, Y.; Lu, H.; Ma, X.; Zhang, X., Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging. Small 2015, 11 (33), 4158-64.
54. Jiang, L.; Zhang, S.; Kulinich, S. A.; Song, X.; Zhu, J.; Wang, X.; Zeng, H., Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors. Materials Research Letters 2015, 3 (4), 177-183.
55. Anbazhagan, R.; Wang, H.-J.; Tsai, H.-C.; Jeng, R.-J., Highly concentrated MoS2 nanosheets in water achieved by thioglycolic acid as stabilizer and used as biomarkers. RSC Advances 2014, 4 (81), 42936-42941.
56. Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H., Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9 (1), 140-147.
57. Li, Q.; Zhao, Y.; Ling, C.; Yuan, S.; Chen, Q.; Wang, J., Towards a Comprehensive Understanding of the Reaction Mechanisms Between Defective MoS2 and Thiol Molecules. Angew Chem Int Ed Engl 2017, 56 (35), 10501-10505.
58. Kim, J.-S.; Yoo, H.-W.; Choi, H. O.; Jung, H.-T., Tunable Volatile Organic Compounds Sensor by Using Thiolated Ligand Conjugation on MoS2. Nano Letters 2014, 14 (10), 5941-5947.
59. Peng, C.-F.; Zhang, Y.-Y.; Qian, Z.-J.; Xie, Z.-J., Fluorescence sensor based on glutathione capped CdTe QDs for detection of Cr3+ ions in vitamins. Food Science and Human Wellness 2018, 7 (1), 71-76.
60. Dhenadhayalan, N.; Lin, K.-C., Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation. Scientific Reports 2015, 5, 10012-10021.
61. Mishra, H.; Umrao, S.; Singh, J.; Srivastava, R. K.; Ali, R.; Misra, A.; Srivastava, A., pH Dependent Optical Switching and Fluorescence Modulation of Molybdenum Sulfide Quantum Dots. Advanced Optical Materials 2017, 5 (9), 1601021.
62. Wang, R.; Yu, Z., Validity and Reliability of Benesi-Hildebrand Method. Acta Physico-Chimica Sinica 2007, 23 (9), 1353-1359.
63. Chen, Y.; Shang, P.; Dong, Y.; Chi, Y., Regulating the overlap between the absorption spectrum of metal ion-chromogenic agent and the emission spectrum of carbon-based dots to improve the sensing performance for metal ions. Sensors and Actuators B: Chemical 2017, 242, 1210-1215.
64. Wang, Z.; Xing, X.; Yang, Y.; Zhao, R.; Zou, T.; Wang, Z.; Wang, Y., One-step hydrothermal synthesis of thioglycolic acid capped CdS quantum dots as fluorescence determination of cobalt ion. Scientific Reports 2018, 8 (1), 8953-8964.
65. Kong, D.; Yan, F.; Han, Z.; Xu, J.; Guo, X.; Chen, L., Cobalt(ii) ions detection using carbon dots as an sensitive and selective fluorescent probe. RSC Advances 2016, 6 (72), 67481-67487.
66. Wen, X.; Shi, L.; Wen, G.; Li, Y.; Dong, C.; Yang, J.; Shuang, S., Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells. Sensors and Actuators B: Chemical 2016, 235, 179-187.
67. Faridbod, F.; Jamali, A.; Ganjali, M. R.; Hosseini, M.; Norouzi, P., A Novel Cobalt-Sensitive Fluorescent Chemosensor Based on Ligand Capped CdS Quantum Dots. J Fluoresc 2015, 25 (3), 613-619.
68. Wang, J.; Jiang, C.; Wang, X.; Wang, L.; Chen, A.; Hu, J.; Luo, Z., Fabrication of an 'ion-imprinting' dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst 2016, 141 (20), 5886-5892.
69. Yin, W.; Dong, X.; Yu, J.; Pan, J.; Yao, Z.; Gu, Z.; Zhao, Y., MoS2-Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & Interfaces 2017, 9 (25), 21362-21370.
70. Li, L.; Liao, L.; Ding, Y.; Zeng, H., Dithizone-etched CdTe nanoparticles-based fluorescence sensor for the off-on detection of cadmium ion in aqueous media. RSC Advances 2017, 7 (17), 10361-10368.
71. Wu, Q.; Zhou, M.; Shi, J.; Li, Q.; Yang, M.; Zhang, Z., Synthesis of Water-Soluble Ag2S Quantum Dots with Fluorescence in the Second Near-Infrared Window for Turn-On Detection of Zn(II) and Cd(II). Analytical Chemistry 2017, 89 (12), 6616-6623.
72. Wen, L.; Qiu, L.; Wu, Y.; Hu, X.; Zhang, X., Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications. Sensors (Basel, Switzerland) 2017, 17 (8), 1736-1749.
73. Wang, S.; Sun, J.; Gao, F., A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly. Analyst 2015, 140 (12), 4001-4006.
74. Qian, Z. S.; Shan, X. Y.; Chai, L. J.; Chen, J. R.; Feng, H., A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosensors and Bioelectronics 2015, 68, 225-231.
75. Wang, X.-Y.; Niu, C.-G.; Guo, L.-J.; Hu, L.-Y.; Wu, S.-Q.; Zeng, G.-M.; Li, F., A Fluorescence Sensor for Lead (II) Ions Determination Based on Label-Free Gold Nanoparticles (GNPs)-DNAzyme Using Time-Gated Mode in Aqueous Solution. J Fluoresc 2017, 27 (2), 643-649.
76. Li, T.; Dong, S.; Wang, E., A Lead(II)-Driven DNA Molecular Device for Turn-On Fluorescence Detection of Lead(II) Ion with High Selectivity and Sensitivity. Journal of the American Chemical Society 2010, 132 (38), 13156-13157.
77. Zhu, H.; Yu, T.; Xu, H.; Zhang, K.; Jiang, H.; Zhang, Z.; Wang, Z.; Wang, S., Fluorescent Nanohybrid of Gold Nanoclusters and Quantum Dots for Visual Determination of Lead Ions. ACS Applied Materials & Interfaces 2014, 6 (23), 21461-21467.
78. Chianelli, R. R.; Siadati, M. H.; De la Rosa, M. P.; Berhault, G.; Wilcoxon, J. P.; Bearden, R.; Abrams, B. L., Catalytic Properties of Single Layers of Transition Metal Sulfide Catalytic Materials. Catalysis Reviews 2006, 48 (1), 1-41.
79. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K., Biomimetic Hydrogen Evolution:  MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society 2005, 127 (15), 5308-5309.
80. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of Active Edge Sites for Electrochemical H<sub>2</sub> Evolution from MoS<sub>2</sub> Nanocatalysts. Science 2007, 317 (5834), 100-103.
81. Laursen, A. B.; Kegnaes, S.; Dahl, S.; Chorkendorff, I., Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science 2012, 5 (2), 5577-5591.
82. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S., Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. Journal of the American Chemical Society 2013, 135 (28), 10274-10277.
83. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M., Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters 2013, 13 (12), 6222-6227.
84. Wang, C.; Ciganda, R.; Salmon, L.; Gregurec, D.; Irigoyen, J.; Moya, S.; Ruiz, J.; Astruc, D., Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angew Chem Int Ed Engl 2016, 55 (9), 3091-3095.
85. Seo, Y. S.; Ahn, E.-Y.; Park, J.; Kim, T. Y.; Hong, J. E.; Kim, K.; Park, Y.; Park, Y., Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Research Letters 2017, 12 (1), 7-17.
86. Ai, L.; Jiang, J., Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour Technol 2013, 132, 374-377.
87. Ismail, M.; Khan, M.; Khan, S.; Khan, M.; Akhtar, K.; Asiri, A. M., Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. 2018, Vol. 260, 78-91.
88. Shen, W.; Qu, Y.; Pei, X.; Li, S.; You, S.; Wang, J.; Zhang, Z.; Zhou, J., Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. Journal of Hazardous Materials 2017, 321, 299-306.
89. Chen, X.; Cai, Z.; Chen, X.; Oyama, M., AuPd bimetallic nanoparticles decorated on graphene nanosheets: their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. Journal of Materials Chemistry A 2014, 2 (16), 5668-5674.
90. Tan, Z.; Abe, H.; Naito, M.; Ohara, S., Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes. Chemical Communications 2010, 46 (24), 4363-4365.
91. Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F., Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry 2012, 4, 310-316.
92. Deshmukh, S. P.; Dhokale, R. K.; Yadav, H. M.; Achary, S. N.; Delekar, S. D., Titania–supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol. Applied Surface Science 2013, 273, 676-683.
93. Veerakumar, P.; Thanasekaran, P.; Lin, K.-C.; Liu, S.-B., Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds. Journal of Colloid and Interface Science 2017, 506, 271-282.
94. Backes, C.; Berner, N. C.; Chen, X.; Lafargue, P.; LaPlace, P.; Freeley, M.; Duesberg, G. S.; Coleman, J. N.; McDonald, A. R., Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. Angew Chem Int Ed Engl 2015, 54 (9), 2638-2642.
95. Yu, J.; Ma, D.; Mei, L.; Gao, Q.; Yin, W.; Zhang, X.; Yan, L.; Gu, Z.; Ma, X.; Zhao, Y., Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. Journal of Materials Chemistry B 2018, 6 (3), 487-498.
96. Qiao, X.-Q.; Zhang, Z.-W.; Tian, F.-Y.; Hou, D.-F.; Tian, Z.-F.; Li, D.-S.; Zhang, Q., Enhanced Catalytic Reduction of p-Nitrophenol on Ultrathin MoS2 Nanosheets Decorated with Noble Metal Nanoparticles. Crystal Growth & Design 2017, 17 (6), 3538-3547.
97. Huang, X.; Zeng, Z.; Bao, S.; Wang, M.; Qi, X.; Fan, Z.; Zhang, H., Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Mol Ther 2013, 4, 1444-1451.
98. Yuwen, L.; Xu, F.; Xue, B.; Luo, Z.; Zhang, Q.; Bao, B.; Su, S.; Weng, L.; Huang, W.; Wang, L., General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6 (11), 5762-5769.
99. Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A., Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chemistry of Materials 2016, 28 (10), 3352-3359.
100. Rajkumar, C.; Thirumalraj, B.; Chen, S.-M.; Veerakumar, P.; Liu, S.-B., Ruthenium Nanoparticles Decorated Tungsten Oxide as a Bifunctional Catalyst for Electrocatalytic and Catalytic Applications. ACS Applied Materials & Interfaces 2017, 9 (37), 31794-31805.
101. Wu, Z.; Jiang, H., Efficient palladium and ruthenium nanocatalysts stabilized by phosphine functionalized ionic liquid for selective hydrogenation. RSC Advances 2015, 5 (44), 34622-34629.
102. Zhang, Y.; Yuan, X.; Wang, Y.; Chen, Y., One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry 2012, 22 (15), 7245-7251.
103. Sen, F.; Karatas, Y.; Gulcan, M.; Zahmakiran, M., Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Advances 2014, 4 (4), 1526-1531.
104. Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayán-Varela, M.; Martínez-Alonso, A.; Tascón, J. M. D., Chemically Exfoliated MoS2 Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase. ACS Applied Materials & Interfaces 2014, 6 (23), 21702-21710.
105. Akbarzadeh, E.; Falamarzi, M.; Gholami, M. R., Synthesis of M/CuO (M = Ag, Au) from Cu based Metal Organic Frameworks for efficient catalytic reduction of p-nitrophenol. Materials Chemistry and Physics 2017, 198, 374-379.
106. Kreider, A.; Richter, K.; Sell, S.; Fenske, M.; Tornow, C.; Stenzel, V.; Grunwald, I., Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes. Applied Surface Science 2013, 273, 562-569.
107. Zheng, H.; Ni, Y.; Xiang, N.; Ma, X.; Wan, F., Solvothermal synthesis of octahedral NiFe2O4 nanocrystals and catalytic properties for the reduction of some aromatic nitrocompounds. Materials Chemistry and Physics 2015, 158, 82-88.
108. Gnanaprakasam, P.; Selvaraju, T., Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction. RSC Advances 2014, 4 (47), 24518-24525.
109. Zeng, T.; Zhang, X.-l.; Ma, Y.-r.; Niu, H.-y.; Cai, Y.-q., A novel Fe3O4-graphene-Au multifunctional nanocomposite: green synthesis and catalytic application. Journal of Materials Chemistry 2012, 22 (35), 18658-18663.
110. Zelekew, O. A.; Kuo, D.-H., Facile synthesis of SiO2@CuxO@TiO2 heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants. Applied Surface Science 2017, 393, 110-118.
111. Chen, H.-F.; Hung, M.-J.; Hung, T.-H.; Tsai, Y.-W.; Su, C.-W.; Yang, J.; Huang, G. G., Single-Step Preparation of Silver-Doped Magnetic Hybrid Nanoparticles for the Catalytic Reduction of Nitroarenes. ACS Omega 2018, 3 (3), 3340-3347.
112. Jayabal, S.; Ramaraj, R., Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction. Applied Catalysis A: General 2014, 470, 369-375.
113. de Souza, J. F.; da Silva, G. T.; Fajardo, A. R., Chitosan-based film supported copper nanoparticles: A potential and reusable catalyst for the reduction of aromatic nitro compounds. Carbohydrate Polymers 2017, 161, 187-196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71878-
dc.description.abstract過渡金屬二硫屬化物是一種近年來被發現的材料,它因為具有可調式的能階差以及化學上高穩定性,吸引到大家的注意。二硫化鉬與二硫化錸為過渡金屬硫化物的家族,我們將其做為二維的材料,甚至是更小尺度的量子點,進而運用到化學感測以及催化反應當中。
1.化學感測:利用二硫化鉬量子點為主體,在其表面修飾上三種不同的官能基,可獲得三種不同的化學感測受體,而這些受體可分別偵測三種不同的金屬離子。二硫化鉬量子點是在N-甲基吡咯烷酮的輔助下進行超音波震盪以及水熱法反應而成,因上述反應的關係,此量子點的邊緣會因共價鍵的斷裂而產生很多的缺陷,這些缺陷可進一步用來與含硫官能基進行表面上的修飾反應。含硫官能基分別為硫乙醇酸、半胱胺鹽酸鹽及1,3-丙二硫醇,以硫做為橋樑在二硫化鉬量子點邊緣以硫-鉬鍵形成鍵結,而官能基的另一方面以羧酸基、胺基及硫醇基用來偵測鈷、鉻及鉛等金屬離子。這三種化學感測受體對於上述的金屬離子具有高度的選擇性與靈敏度,對於鈷、鉻及鉛等金屬離子的偵測極限分別為54.5,99.6以及0.84nM。其偵測極限可到奈米等級的原因主要是量子點上修飾的官能基與特定金屬具有很強的親和力所致。此外上述提及的感測受體亦能應用在實際的水樣當中。
2.催化反應:以二硫化錸之二維材料作為載體,將貴重金屬奈米粒子嵌入其中後形成奈米複合體,此奈米複合體在含氮苯環化合物的還原反應中可作為一個出色的催化劑。催化劑的組成主要是以二硫化錸奈米層片及貴重奈米金屬,在聚乙烯吡咯烷酮的剝離作用下,將二硫化錸進行超音波震盪,便可得到二硫化錸奈米薄片,接著將貴重金屬奈米粒子(金、銀、鈀、鉑以及銣)以水熱法的方式將其成功的嵌入在奈米薄片上。接著利用場發射掃描式電子顯微鏡、X射線光電子能譜學、X光繞射分析儀以及拉曼光譜分析儀等儀器充分的證明此奈米複合體催化劑的結構與型態。二硫化錸/金、銀、鈀、鉑以及銣之奈米複合體在在含氮苯環化合物的還原反應當中扮演著催化的角色,其被還原的對象為4-硝基苯酚、2-硝基苯胺以及硝基苯,並且成功展現優異的催化能力。值得注意的是,相較於其他奈米複合體,二硫化錸/鈀、二硫化錸/銣具有更卓越催化能力。
zh_TW
dc.description.abstractTransition metal dichalcogenides (TMD) materials have attracted attention due to its tunable optical band gap and high chemical stability. Therefore, molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), two members of TMD, are used in the application of chemosensor and catalysis.
1. Chemosensor: The MoS2 quantum dots (QDs) with different surface modification have multiple sensing capabilities to detecting metal ions. MoS2 QDs are synthesized through a bottom-up approach using a simple sonication and hydrothermal methods. Its surface with detective-rich edge was modified with three thiol-containing functional groups individually, which exploits a facile hydrothermal method to form carboxylic-, amine- and thiol-functionalized MoS2 QDs (MoS2/COOH, MoS2/NH2 and MoS2/SH). The design of MoS2 QDs sensors for detection of metal ions are implemented based on the fluorescence turn-on mechanism. These MoS2/COOH, MoS2/NH2 and MoS2/SH QDs show highly selective and sensitive towards Co2+, Cd2+ and Pb2+ ions with detection limit of 54.5, 99.6 and 0.84 nM, respectively. The strong affinity of each metal ions with surface functional groups brings about the detection limit as low as in the nanomolar range. What’s more, these as-prepared QDs can also offer detection capability in real water samples.
2. Catalysis: The noble metal nanoparticles decorated rhenium disulfide nanosheets (ReS2 NSs) nanohybrids are demonstrated as an excellent catalyst towards the reduction of aromatic nitro-compounds. The ReS2 NSs are prepared through sonication-assisted exfoliation in polyvinylpyrrolidone (PVP) solution and then noble metal nanoparticles (Ag, Au, Pd, Pt and Ru) are successfully deposited on the ReS2 NSs using hydrothermal method. The structure and morphology of prepared nanohybrids are well characterized by field-emission transmission electron microscopy (FETEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. These ReS2 nanohybrids exhibited superior catalytic performance towards the reduction of aromatic nitro compounds including 4-nitrophenol (4-NP), 2-nitroaniline (2-NA) and nitrobenzene (NB). Interestingly, the Pd/ReS2 and Ru/ReS2 nanohybrids showed enhanced catalytic reduction compared to the other nanohybrids used in this work.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:13:12Z (GMT). No. of bitstreams: 1
ntu-107-R05223181-1.pdf: 6566218 bytes, checksum: 3aa84f6cf2a17f9d4e663651d595aeb0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsAbstract ……………………………………………………………………………….i
摘要 ……………………………………………………………………………...iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Material and instrument 6
1.2.1 Material 6
1.2.2 Instrument 7
Chapter 2. Chemically Induced Fluorescence Turn-on of Surface Functionalized MoS2 Quantum Dots for Metal Ion Sensors 8
2.1 Introduction 8
2.2 Experimental section 10
2.2.1 Synthesis of MoS2 QDs 10
2.2.2 Synthesis of functionalized MoS2 QDs based metal ion sensor 11
2.2.3 Detection of metal ions 12
2.2.4 Theoretical method 14
2.2.5 Real sample analysis 14
2.3 Results and discussion 14
2.3.1 Characterization of QDs 14
2.3.2 Optical properties of QDs 20
2.3.3 Selectivity of sensors 22
2.3.4 Sensitivity of the sensors 24
2.3.5 Association Constant and Stoichiometry 26
2.3.6 Sensing mechanism 27
2.3.7 Comparison of various sensors 30
2.3.8 Theoretical calculation 31
2.3.9 Application in real water sample 34
2.4 Conclusion 36
Chapter 3. Noble Metal Nanoparticles-Decorated Rhenium Disulfide Nanohybrids: Propitious Catalytic Activity in the Reduction of Nitroarenes 38
3.1 Introduction 38
3.2 Experimental section 41
3.2.1 Synthesis of ReS2 NSs 41
3.2.2 Synthesis of metal NP/ReS2 nanohybrids 41
3.2.3 Catalytic reduction of nitroarenes 42
3.3 Results and discussion 43
3.3.1 Characterization of NPs/ReS2 nanohybirds 43
3.3.2 Catalytic activities of metal NP/ReS2 nanohybrids 49
3.3.3 Rate constant for the reduction of nitroarenes 58
3.3.4 Catalyst reusability 61
3.3.5 Catalytic reduction mechanism 62
3.4 Conclusion 65
Chapter 4. Future perspective 67
Reference 68
dc.language.isoen
dc.subject化學感測zh_TW
dc.subject奈米層片zh_TW
dc.subject量子點zh_TW
dc.subject過渡金屬二硫屬化物zh_TW
dc.subject二硫化錸/鈀zh_TW
dc.subject催化反應zh_TW
dc.subject二硫化鉬zh_TW
dc.subjectTMDen
dc.subjectrhenium disulfideen
dc.subjectmolybdenum disulfideen
dc.subjectcatalysisen
dc.subjectchemosensoren
dc.subjectnanosheeten
dc.subjectquantum doten
dc.title利用過渡金屬二硫屬化物之奈米材料對化學感測及催化反應進行協同作用zh_TW
dc.titleNanoscale Transition Metal Dichalcogenides for Exploiting Synergies in Chemosensor and Catalysisen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭淑芬,呂光烈
dc.subject.keyword過渡金屬二硫屬化物,量子點,奈米層片,化學感測,催化反應,二硫化鉬,二硫化錸/鈀,zh_TW
dc.subject.keywordTMD,quantum dot,nanosheet,chemosensor,catalysis,molybdenum disulfide,rhenium disulfide,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201804167
dc.rights.note有償授權
dc.date.accepted2018-10-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved