請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71854完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白奇峰(Chi-Feng Pai) | |
| dc.contributor.author | Ting-Chien Wang | en |
| dc.contributor.author | 王庭謙 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:12:13Z | - |
| dc.date.available | 2018-11-08 | |
| dc.date.copyright | 2018-11-08 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-10-12 | |
| dc.identifier.citation | 1. JULLIERE, M., TUNNELING BETWEEN FERROMAGNETIC FILMS. Physics Letters A, 1975. 54(3): p. 225-226.
2. Ikeda, S., et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat Mater, 2010. 9(9): p. 721-4. 3. Slonczewski, J.C., Current-driven excitation of magnetic multilayers. Journal of Magnetismand Magnetic Materials, 1996. 159. 4. Berger, L., Emission of spin waves by a magnetic multilayer traversed by a current. PhysRevB.54.9353, 1996. 5. E. B. Myers, D.C.R., 1* J. A. Katine,2 R. N. Louie,2 R. A. Buhrman2, Current-Induced Switching of Domains in Magnetic Multilayer Devices. SCIENCE VOL 285 6 1999. 6. J. A. Katine, F.J.A., and R. A. Buhrman, Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. PhysRevLett.84.3149, 2000. 7. PEREL, M.I.D.a.V.I., CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS. Physics Letters A, 1971. 35: p. 459-460. 8. Hirsch, J.E., Spin Hall Effect. PhysRevLett.83.1834, 1999. 9. Zhang, S., Spin Hall Effect in the Presence of Spin Diffusion. PhysRevLett, 2000. 10. Luqiao Liu, C.-F.P., 1* Y. Li,1 H. W. Tseng,1 D. C. Ralph,1,2 R. A. Buhrman1†, Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. SCIENCE VOL 336, 2012. 11. Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101(12): p. 122404. 12. Yang, H.X., et al., First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces. Physical Review B, 2011. 84(5). 13. An, G.-G., et al., Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers. Acta Materialia, 2015. 87: p. 259-265. 14. Kozina, X., et al., A nondestructive analysis of the B diffusion in Ta–CoFeB–MgO–CoFeB–Ta magnetic tunnel junctions by hard x-ray photoemission. Applied Physics Letters, 2010. 96(7): p. 072105. 15. Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005. 86(9): p. 092502. 16. Yuasa, S., et al., Characterization of growth and crystallization processes in CoFeB∕MgO∕CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Applied Physics Letters, 2005. 87(24): p. 242503. 17. Toyoo Miyajima, T.I., Shinjiro Umehara, Masashige Sato, Shin Eguchi, Mineharu Tsukada, and Yuji Kataoka, Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers. Appl. Phys. Lett., 2009. 94(122501). 18. Liu, T., J.W. Cai, and L. Sun, Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer. AIP Advances, 2012. 2(3): p. 032151. 19. Oh, Y.-W., et al., Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers. Journal of Applied Physics, 2014. 115(17): p. 17C724. 20. Ueda, K., et al., Spin-orbit torques in Ta/TbxCo100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Applied Physics Letters, 2016. 109(23): p. 232403. 21. Ueda, K., et al., Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Physical Review B, 2017. 96(6). 22. Finley, J. and L. Liu, Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys. Physical Review Applied, 2016. 6(5). 23. Mishra, R., et al., Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. Phys Rev Lett, 2017. 118(16): p. 167201. 24. Xia, K., et al., Spin torques in ferromagnetic/normal-metal structures. Physical Review B, 2002. 65(22). 25. Brataas, A., A.D. Kent, and H. Ohno, Current-induced torques in magnetic materials. Nat Mater, 2012. 11(5): p. 372-81. 26. Naoto Nagaosa, J.S., Shigeki Onoda, A. H. MacDonald, N. P. Ong, Anomalous hall effect. 2009. 27. Sinova, J., et al., Spin Hall effects. Reviews of Modern Physics, 2015. 87(4): p. 1213-1260. 28. Han, J., et al., Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator. Phys Rev Lett, 2017. 119(7): p. 077702. 29. Liu, J., et al., Correlation between the spin Hall angle and the structural phases of early 5d transition metals. Applied Physics Letters, 2015. 107(23): p. 232408. 30. Fukami, S., et al., A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat Nanotechnol, 2016. 11(7): p. 621-5. 31. Liu, L., et al., Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett, 2011. 106(3): p. 036601. 32. Liu, L., et al., Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys Rev Lett, 2012. 109(18): p. 186602. 33. Emori, S., et al., Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Physical Review B, 2014. 90(18). 34. Lee, O.J., et al., Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Physical Review B, 2014. 89(2). 35. Emori, S., et al., Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater, 2013. 12(7): p. 611-6. 36. Pai, C.-F., et al., Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 2016. 93(14). 37. Miron, I.M., et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011. 476(7359): p. 189-93. 38. Cubukcu, M., et al., Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Applied Physics Letters, 2014. 104(4): p. 042406. 39. Mondal, S., et al., All-optical detection of the spin Hall angle in W/CoFeB/SiO2 heterostructures with varying thickness of the tungsten layer. Physical Review B, 2017. 96(5). 40. Tsai, T.Y., et al., Spin-orbit torque magnetometry by wide-field magneto-optical Kerr effect. Sci Rep, 2018. 8(1): p. 5613. 41. van ‘t Erve, O.M.J., et al., Optical detection of spin Hall effect in metals. Applied Physics Letters, 2014. 104(17): p. 172402. 42. Ou, Y., D.C. Ralph, and R.A. Buhrman, Strong perpendicular magnetic anisotropy energy density at Fe alloy/HfO2 interfaces. Applied Physics Letters, 2017. 110(19): p. 192403. 43. Pai, C.-F., et al., Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures. Applied Physics Letters, 2014. 104(8): p. 082407. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71854 | - |
| dc.description.abstract | 在磁阻式隨機存取記憶體(magnetoresistive random access memory, MRAM)中,透過自旋軌道矩(spin-orbit torque, SOT)來翻轉磁矩方向是一個非常有效率的控制機制。在這種記憶體薄膜結構中,主要由兩大部分組成,包含作為自旋軌道矩來源的薄膜層以及儲存訊息的磁性層。在自旋軌道矩的材料中,原子序較大的過渡金屬因為有較強的自旋霍爾效應而備受青睞。至於磁性層,具有垂直異向性(perpendicular magnetic anisotropy, PMA)的薄膜材料則是我們實驗室的研究重點,主要是其在儲存密度與穩定性上可以提供更好的效果。因此,在我的研究中,主要著重於自旋軌道矩在不同垂直磁性多層膜異質結構中的作用效用之比較。
在我的研究中,W被選為產生自旋軌道矩之材料,因為它具有較強的自旋霍爾效應(spin-Hall effect, SHE)。這使其作為一個底層結構能夠提供相鄰磁性層高效率的damping-like spin-orbit torque (DL-SOT)。在這項研究中,有兩種磁性曾被拿來做比較,包含鐵磁材料和亞鐵磁材料,而這兩者都具備十分優秀的垂直異向性。實驗中的自旋軌道矩效率(DL-SOT efficiency )是透過磁滯曲線對不同外加電流的偏移量進行分析而得,從結果我們可以得到不管是在W/ 或W/ 的系統中,都可以顯示對W的微結構有明顯的相關性,而在鐵磁和亞鐵磁兩個系統中,自旋軌道矩的作用效率可達 和 。這些數據提供我們了解到非晶質W可以在鐵磁和亞鐵磁材料中提供有效的自旋軌道矩之作用。 | zh_TW |
| dc.description.abstract | Spin-orbit torque magnetoresistive random access memory (SOT-MRAM) is a promising memory device. Its basic structure is composed of two major parts, spin-Hall induced layer and magnetic layer. For spin-Hall materials, heavy transition metals with large atomic numbers are the most popular candidates due to their large spin-Hall ratios. As for magnetic layers, materials with perpendicular magnetic anisotropy (PMA) is our priority since this property can provide higher memory density and thermal stability for MRAM devices. Thus my investigation focuses on the comparative study on spin-orbit torque efficiencies from different magnetic heterostructures with PMA.
In my investigation, W is chosen for its largest spin-Hall ratio among all heavy transition metals, which makes it a good candidate for generating efficient damping-like spin-orbit torque (DL-SOT) acting upon adjacent ferromagnetic or ferrimagnetic layer. Here I provide a systematic study on the spin transport properties of W/FM magnetic heterostructures with the FM layer being ferromagnetic or ferrimagnetic with PMA. The DL-SOT efficiency , which is characterized by a current-induced hysteresis loop shift method, is found to be correlated to the microstructure of W buffer layer in both W/ and W/ systems. Maximum values of and are achieved when the W layer is amorphous in the W/ and W/ heterostructures, respectively. Our results suggest that the spin-Hall effect from resistive phase of W can be utilized to effectively control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:12:13Z (GMT). No. of bitstreams: 1 ntu-107-R05527068-1.pdf: 13160205 bytes, checksum: 29516d6bb18ecbb98dc3d04ff1b7a0a0 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝辭 i
中文摘要 iii Abstract iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii 1 Introduction 1 2 Background knowledge 5 2-1. Fundamental Theory of Magnetization 5 2-1-1. Property of Magnetism 5 2-1-2. Introduction of Exchange Interaction 26 2-1-3. Magnetic Anisotropy 34 2-1-4. Magnetic Energy 39 2-1-5. Domain and Domain Wall 41 2-2. Fundamental of Spintronics 44 2-2-1. Spin-Transfer Torque 44 2-2-2. Anomalous Hall Effect 46 2-2-3. Spin-Hall Effect 48 2-2-4. Magnetization Dynamics 49 2-2-5. Spin-Orbit Torque 51 3 Fabrication and Analysis 53 3-1. Photolithography 54 3-2. Magnetron Sputtering System 58 3-3. Magnetization property characterization 64 3-3-1. Magneto-optic Kerr effect 64 3-3-2. Vibrating Sample Magnetometer 66 3-4. Electric Transport Measurement 67 3-4-1. Current Induced DL-SOT Loop Shift Measurement 67 2-4-3. Current-Induced SOT Switching 71 4 Results and Discussion 72 4-1. PMA samples calibration 72 4-2. Effect of W Microstructure on PMA property 75 4-3. Magnetization calibration 78 4-4. Effect of W microstructure on DL-SOT efficiency 81 4-5. Comparative study on ferromagnetic and ferrimangetic heterostructures 87 4-6. Current induced DL-SOT switching in W based PMA heterostructures 91 5. Conclusion 94 REFERENCE 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 垂直磁異向性 | zh_TW |
| dc.subject | 自旋軌道矩效率 | zh_TW |
| dc.subject | 鐵磁(亞鐵磁)異質結構 | zh_TW |
| dc.subject | 磁阻式記憶體 | zh_TW |
| dc.subject | 自旋霍爾效應 | zh_TW |
| dc.subject | 自旋軌道矩 | zh_TW |
| dc.subject | MRAM | en |
| dc.subject | PMA | en |
| dc.subject | ferromagnetic heterostructures | en |
| dc.subject | ferrimagnetic heterostructures | en |
| dc.subject | spin-orbit torque efficiency | en |
| dc.subject | spin-orbit torque | en |
| dc.subject | spin-Hall effect | en |
| dc.title | 自旋軌道矩於鎢/鐵磁與鎢/亞鐵磁異質結構中的效率比較 | zh_TW |
| dc.title | Comparative study on spin-orbit torque efficiencies from W/ferromagnetic and W/ferrimagnetic heterostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃斯衍(Ssu-Yen Huang),廖洺漢(Ming Han, Liao) | |
| dc.subject.keyword | 自旋軌道矩,磁阻式記憶體,自旋霍爾效應,垂直磁異向性,鐵磁(亞鐵磁)異質結構,自旋軌道矩效率, | zh_TW |
| dc.subject.keyword | spin-orbit torque,MRAM,spin-Hall effect,PMA,ferromagnetic heterostructures,ferrimagnetic heterostructures,spin-orbit torque efficiency, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201804182 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-10-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 12.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
