Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71853
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳
dc.contributor.authorChia-Yu Linen
dc.contributor.author林家鈺zh_TW
dc.date.accessioned2021-06-17T06:12:11Z-
dc.date.available2023-10-18
dc.date.copyright2018-10-18
dc.date.issued2018
dc.date.submitted2018-10-14
dc.identifier.citation1. Poewe, W.; Seppi, K.; Tanner, C. M.; Halliday, G. M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A. E., Parkinson disease. Nature reviews Disease primers 2017, 3, 17013.
2. Kumar, A.; Singh, A., A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological Reports 2015, 67 (2), 195-203.
3. Calkins, D. J.; Pekny, M.; Cooper, M. L.; Benowitz, L.; Calkins, D.; Cooper, M.; Crowston, J.; Huberman, A.; Johnson, E.; Lu, R., The challenge of regenerative therapies for the optic nerve in glaucoma. Experimental eye research 2017, 157, 28-33.
4. Illis, L., Central nervous system regeneration does not occur. Spinal Cord 2012, 50 (4), 259.
5. Álvarez, Z.; Castaño, O.; Castells, A. A.; Mateos-Timoneda, M. A.; Planell, J. A.; Engel, E.; Alcántara, S., Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 2014, 35 (17), 4769-4781.
6. Kador, K. E.; Grogan, S. P.; Dorthé, E. W.; Venugopalan, P.; Malek, M. F.; Goldberg, J. L.; D'lima, D. D., Control of retinal ganglion cell positioning and neurite growth: combining 3D printing with radial electrospun scaffolds. Tissue Engineering Part A 2016, 22 (3-4), 286-294.
7. Li, K.; Zhong, X.; Yang, S.; Luo, Z.; Li, K.; Liu, Y.; Cai, S.; Gu, H.; Lu, S.; Zhang, H., HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta biomaterialia 2017, 54, 117-127.
8. Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R., Nanotechnological strategies for engineering complex tissues. Nature nanotechnology 2011, 6 (1), 13.
9. Hay, E. D., Cell biology of extracellular matrix. Springer Science & Business Media: 2013.
10. A de Mel, A.; Jell, G.; Stevens, M. M.; Seifalian, A. M., Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 2008, 9 (11), 2969-2979.
11. Iwamoto, D. V.; Calderwood, D. A., Regulation of integrin-mediated adhesions. Current opinion in cell biology 2015, 36, 41-47.
12. Anthis, N. J.; Campbell, I. D., The tail of integrin activation. Trends in biochemical sciences 2011, 36 (4), 191-198.
13. Wehrle-Haller, B., Structure and function of focal adhesions. Current opinion in cell biology 2012, 24 (1), 116-124.
14. Margadant, C.; Monsuur, H. N.; Norman, J. C.; Sonnenberg, A., Mechanisms of integrin activation and trafficking. Current opinion in cell biology 2011, 23 (5), 607-614.
15. O'brien, F. J., Biomaterials & scaffolds for tissue engineering. Materials today 2011, 14 (3), 88-95.
16. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Biomaterials science: an introduction to materials in medicine. Elsevier: 2004.
17. Perez, R. A.; Won, J.-E.; Knowles, J. C.; Kim, H.-W., Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced drug delivery reviews 2013, 65 (4), 471-496.
18. Saltzman, W. M.; Kyriakides, T. R., Cell interactions with polymers. In Principles of Tissue Engineering (Fourth Edition), Elsevier: 2014; pp 385-406.
19. Place, E. S.; Evans, N. D.; Stevens, M. M., Complexity in biomaterials for tissue engineering. Nature materials 2009, 8 (6), 457.
20. Smetana Jr, K.; Vacik, J.; Součková, D.; Krčová, Z.; Šulc, J., The influence of hydrogel functional groups on cell behavior. Journal of biomedical materials research 1990, 24 (4), 463-470.
21. Lee, J. H.; Jung, H. W.; Kang, I.-K.; Lee, H. B., Cell behaviour on polymer surfaces with different functional groups. Biomaterials 1994, 15 (9), 705-711.
22. Hersel, U.; Dahmen, C.; Kessler, H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24 (24), 4385-4415.
23. Song, S.-J.; Shin, Y. C.; Kim, S. E.; Kwon, I. K.; Lee, J.-H.; Hyon, S.-H.; Han, D.-W.; Kim, B., Aligned laminin core-polydioxanone/collagen shell fiber matrices effective for neuritogenesis. Scientific reports 2018, 8 (1), 5570.
24. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chemical reviews 2001, 101 (7), 1869-1880.
25. Erskine, L.; Herrera, E., Connecting the retina to the brain. ASN neuro 2014, 6 (6), 1759091414562107.
26. Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M., Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 2009, 38 (4), 1139-1151.
27. Zhang, H.; Cooper, A. I., Aligned porous structures by directional freezing. Advanced materials 2007, 19 (11), 1529-1533.
28. Wu, X.; Liu, Y.; Li, X.; Wen, P.; Zhang, Y.; Long, Y.; Wang, X.; Guo, Y.; Xing, F.; Gao, J., Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia 2010, 6 (3), 1167-1177.
29. Wu, J.; Zhao, Q.; Sun, J.; Zhou, Q., Preparation of poly (ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 2012, 8 (13), 3620-3626.
30. Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O., Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances 2015, 1 (11), e1500849.
31. Zhang, S.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton, R.; Mantei, J. R.; Aparicio, C.; De La Cruz, M. O.; Stupp, S. I., A self-assembly pathway to aligned monodomain gels. Nature materials 2010, 9 (7), 594.
32. Berns, E. J.; Sur, S.; Pan, L.; Goldberger, J. E.; Suresh, S.; Zhang, S.; Kessler, J. A.; Stupp, S. I., Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 2014, 35 (1), 185-195.
33. Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Yong, T.; Ma, Z.; Ramaseshan, R., Electrospun nanofibers: solving global issues. Materials today 2006, 9 (3), 40-50.
34. Jin, G.; He, R.; Sha, B.; Li, W.; Qing, H.; Teng, R.; Xu, F., Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Materials Science and Engineering: C 2018.
35. Winter, C. C.; Katiyar, K. S.; Hernandez, N. S.; Song, Y. J.; Struzyna, L. A.; Harris, J. P.; Cullen, D. K., Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta biomaterialia 2016, 38, 44-58.
36. Holzapfel, B. M.; Reichert, J. C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D. W., How smart do biomaterials need to be? A translational science and clinical point of view. Advanced drug delivery reviews 2013, 65 (4), 581-603.
37. Chen, Q.; Liang, S.; Thouas, G. A., Elastomeric biomaterials for tissue engineering. Progress in polymer science 2013, 38 (3-4), 584-671.
38. Yuan, S.; Xiong, G.; Wang, X.; Zhang, S.; Choong, C., Surface modification of polycaprolactone substrates using collagen-conjugated poly (methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry 2012, 22 (26), 13039-13049.
39. Vacanti, N. M.; Cheng, H.; Hill, P. S.; Guerreiro, J. o. D.; Dang, T. T.; Ma, M.; Watson, S. e.; Hwang, N. S.; Langer, R.; Anderson, D. G., Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012, 13 (10), 3031-3038.
40. Washington, K. S.; Bashur, C. A., Delivery of Antioxidant and Anti-inflammatory Agents for Tissue Engineered Vascular Grafts. Frontiers in pharmacology 2017, 8, 659.
41. Collazos-Castro, J. E.; García-Rama, C.; Alves-Sampaio, A., Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta biomaterialia 2016, 35, 42-56.
42. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: towards a smart biomaterial for tissue engineering. Acta biomaterialia 2014, 10 (6), 2341-2353.
43. Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Progress in polymer science 2007, 32 (8-9), 762-798.
44. Romberg, B.; Metselaar, J. M.; Baranyi, L.; Snel, C. J.; Bünger, R.; Hennink, W. E.; Szebeni, J.; Storm, G., Poly (amino acid) s: promising enzymatically degradable stealth coatings for liposomes. International journal of pharmaceutics 2007, 331 (2), 186-189.
45. Jun, H. W.; Yuwono, V.; Paramonov, S. E.; Hartgerink, J. D., Enzyme‐Mediated Degradation of Peptide‐Amphiphile Nanofiber Networks. Advanced Materials 2005, 17 (21), 2612-2617.
46. Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A., Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. Journal of Neuroscience 2008, 28 (14), 3814-3823.
47. Chen, G.-Q., Biofunctionalization of polymers and their applications. In Biofunctionalization of Polymers and their Applications, Springer: 2010; pp 29-45.
48. Holmes, T. C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S., Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences 2000, 97 (12), 6728-6733.
49. Lim, D. W.; Nettles, D. L.; Setton, L. A.; Chilkoti, A., In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 2007, 9 (1), 222-230.
50. Deming, T. J., Synthesis of side-chain modified polypeptides. Chemical reviews 2015, 116 (3), 786-808.
51. Qian, J.; Yong, X.; Xu, W.; Jin, X., Preparation and characterization of bimodal porous poly (γ-benzyl-L-glutamate) scaffolds for bone tissue engineering. Materials Science and Engineering: C 2013, 33 (8), 4587-4593.
52. Fang, J.; Yong, Q.; Zhang, K.; Sun, W.; Yan, S.; Cui, L.; Yin, J., Novel injectable porous poly (γ-benzyl-l-glutamate) microspheres for cartilage tissue engineering: Preparation and evaluation. Journal of Materials Chemistry B 2015, 3 (6), 1020-1031.
53. Wang, Z. H.; Chang, Y. Y.; Wu, J. G.; Lin, C. Y.; An, H. L.; Luo, S. C.; Tang, T. K.; Su, W. F., Novel 3D Neuron Regeneration Scaffolds Based on Synthetic Polypeptide Containing Neuron Cue. Macromolecular bioscience 2018, 18 (3), 1700251.
54. Gribova, V.; Auzely-Velty, R.; Picart, C., Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chemistry of Materials 2011, 24 (5), 854-869.
55. Lee, C.-J.; Wu, H.; Hu, Y.; Young, M.; Wang, H.; Lynch, D.; Xu, F.; Cong, H.; Cheng, G., Ionic Conductivity of Polyelectrolyte Hydrogels. ACS applied materials & interfaces 2018, 10 (6), 5845-5852.
56. Li, H.; Erbaş, A.; Zwanikken, J.; Olvera de la Cruz, M., Ionic conductivity in polyelectrolyte hydrogels. Macromolecules 2016, 49 (23), 9239-9246.
57. Zhou, K.; Thouas, G. A.; Bernard, C. C.; Nisbet, D. R.; Finkelstein, D. I.; Li, D.; Forsythe, J. S., Method to impart electro-and biofunctionality to neural scaffolds using graphene–polyelectrolyte multilayers. ACS applied materials & interfaces 2012, 4 (9), 4524-4531.
58. Lee, I.-C.; Wu, Y.-C., Assembly of polyelectrolyte multilayer films on supported lipid bilayers to induce neural stem/progenitor cell differentiation into functional neurons. ACS applied materials & interfaces 2014, 6 (16), 14439-14450.
59. Lu, H. F.; Lim, S.-X.; Leong, M. F.; Narayanan, K.; Toh, R. P.; Gao, S.; Wan, A. C., Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds. Biomaterials 2012, 33 (36), 9179-9187.
60. Jian, W.-H.; Wang, H.-C.; Kuan, C.-H.; Chen, M.-H.; Wu, H.-C.; Sun, J.-S.; Wang, T.-W., Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials 2018, 174, 17-30.
61. Stevens, C. F., Neurotransmitter release at central synapses. Neuron 2003, 40 (2), 381-388.
62. Alfonso, J.; Le Magueresse, C.; Zuccotti, A.; Khodosevich, K.; Monyer, H., Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. Cell stem cell 2012, 10 (1), 76-87.
63. Fernando, R. N.; Eleuteri, B.; Abdelhady, S.; Nussenzweig, A.; Andäng, M.; Ernfors, P., Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proceedings of the National Academy of Sciences 2011, 108 (14), 5837-5842.
64. Berg, D. A.; Kirkham, M.; Wang, H.; Frisén, J.; Simon, A., Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons. Cell stem cell 2011, 8 (4), 426-433.
65. Berg, D. A.; Belnoue, L.; Song, H.; Simon, A., Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 2013, 140 (12), 2548-2561.
66. Takeda, M.; Takamiya, A.; Jiao, J.-w.; Cho, K.-S.; Trevino, S. G.; Matsuda, T.; Chen, D. F., α-Aminoadipate induces progenitor cell properties of Muller glia in adult mice. Investigative ophthalmology & visual science 2008, 49 (3), 1142-1150.
67. Song, M.; Yu, S. P.; Mohamad, O.; Cao, W.; Wei, Z. Z.; Gu, X.; Jiang, M. Q.; Wei, L., Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiology of disease 2017, 98, 9-24.
68. Brazel, C.; Nunez, J.; Yang, Z.; Levison, S., Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 2005, 131 (1), 55-65.
69. Kotwal, A.; Schmidt, C. E., Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 2001, 22 (10), 1055-1064.
70. Chang, Y.-J.; Hsu, C.-M.; Lin, C.-H.; Lu, M. S.-C.; Chen, L., Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochimica et Biophysica Acta (BBA)-General Subjects 2013, 1830 (8), 4130-4136.
71. Brosenitsch, T. A.; Katz, D. M., Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. Journal of Neuroscience 2001, 21 (8), 2571-2579.
72. Kang, M.; Yoo, S. M.; Gwak, R.; Eom, G.; Kim, J.; Lee, S. Y.; Kim, B., Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires. Nanoscale 2016, 8 (1), 214-218.
73. Histed, M. H.; Bonin, V.; Reid, R. C., Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 2009, 63 (4), 508-522.
74. Zhu, B.; Luo, S.-C.; Zhao, H.; Lin, H.-A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H.-h., Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nature communications 2014, 5, 4523.
75. Greene, L. A.; Tischler, A. S., Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences 1976, 73 (7), 2424-2428.
76. Greene, L. A.; Aletta, J. M.; Rukenstein, A.; Green, S. H., [18] PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. In Methods in enzymology, Elsevier: 1987; Vol. 147, pp 207-216.
77. Lin, H. A.; Zhu, B.; Wu, Y. W.; Sekine, J.; Nakao, A.; Luo, S. C.; Yamashita, Y.; Yu, H. H., Dynamic Poly (3, 4‐ethylenedioxythiophene) s Integrate Low Impedance with Redox‐Switchable Biofunction. Advanced Functional Materials 2018, 28 (12), 1703890.
78. Marcus, M.; Skaat, H.; Alon, N.; Margel, S.; Shefi, O., NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells. Nanoscale 2015, 7 (3), 1058-1066.
79. Taskin, M. B.; Xu, R.; Zhao, H.; Wang, X.; Dong, M.; Besenbacher, F.; Chen, M., Poly (norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Physical Chemistry Chemical Physics 2015, 17 (14), 9446-9453.
80. Hoop, M.; Chen, X.-Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S., Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Scientific reports 2017, 7 (1), 4028.
81. Wu, Y.; Wang, L.; Hu, T.; Ma, P. X.; Guo, B., Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. Journal of colloid and interface science 2018, 518, 252-262.
82. Das, K. P.; Freudenrich, T. M.; Mundy, W. R., Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicology and teratology 2004, 26 (3), 397-406.
83. Sah, H.; Toddywala, R.; Chien, Y. W., The influence of biodegradable microcapsule formulations on the controlled release of a protein. Journal of controlled release 1994, 30 (3), 201-211.
84. Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R., Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences 1997, 94 (17), 8948-8953.
85. Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W., The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008, 29 (6), 653-661.
86. Zhao, C.; Deng, W.; Gage, F. H., Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132 (4), 645-660.
87. Guo, B.; Ma, P. X., Conducting polymers for tissue engineering. Biomacromolecules 2018, 19 (6), 1764-1782.
88. Wang, J.; Boutin, K. G.; Abdulhadi, O.; Personnat, L. D.; Shazly, T.; Langer, R.; Channick, C. L.; Borenstein, J. T., Fully Biodegradable Airway Stents Using Amino Alcohol‐Based Poly (ester amide) Elastomers. Advanced healthcare materials 2013, 2 (10), 1329-1336.
89. Liu, X.; Holzwarth, J. M.; Ma, P. X., Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromolecular bioscience 2012, 12 (7), 911-919.
90. Inbaraj, B. S.; Wang, J.; Lu, J.; Siao, F.; Chen, B., Adsorption of toxic mercury (II) by an extracellular biopolymer poly (γ-glutamic acid). Bioresource Technology 2009, 100 (1), 200-207.
91. Sakamoto, S.; Kawase, Y., Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of environmental radioactivity 2016, 165, 151-158.
92. Kumar, R.; Inbaraj, B. S.; Chen, B., Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly (γ-glutamic acid) as coating material. Materials Research Bulletin 2010, 45 (11), 1603-1607.
93. Wang, L.-L.; Chen, J.-T.; Wang, L.-F.; Wu, S.; Zhang, G.-z.; Yu, H.-Q.; Ye, X.-d.; Shi, Q.-S., Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions. Scientific reports 2017, 7 (1), 12787.
94. Gittens, R. A.; Scheideler, L.; Rupp, F.; Hyzy, S. L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B. D., A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta biomaterialia 2014, 10 (7), 2907-2918.
95. Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V., Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnology advances 2011, 29 (6), 739-767.
96. Cardoso, J.; Vázquez, G.; Soria‐Arteche, O.; Cruz, R.; González, I. In Ionic Conductivity of Polymer Electrolytes, Macromolecular symposia, Wiley Online Library: 2009; pp 205-210.
97. Wang, G.; Zhou, X.; Li, M.; Zhang, J.; Kang, J.; Lin, Y.; Fang, S.; Xiao, X., Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells. Materials Research Bulletin 2004, 39 (13), 2113-2118.
98. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
99. Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001, 46 (22), 3457-3466.
100. von Burkersroda, F.; Schedl, L.; Göpferich, A., Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23 (21), 4221-4231.
101. Zhou, Z.; Yu, P.; Geller, H. M.; Ober, C. K., The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. Biomaterials 2012, 33 (8), 2473-2481.
102. Gao, J.; Kim, Y. M.; Coe, H.; Zern, B.; Sheppard, B.; Wang, Y., A neuroinductive biomaterial based on dopamine. Proceedings of the National Academy of Sciences 2006, 103 (45), 16681-16686.
103. Snyder, S. H., Turning off neurotransmitters. Cell 2006, 125 (1), 13-15.
104. Kole, M. H.; Ilschner, S. U.; Kampa, B. M.; Williams, S. R.; Ruben, P. C.; Stuart, G. J., Action potential generation requires a high sodium channel density in the axon initial segment. Nature neuroscience 2008, 11 (2), 178.
105. Bender, K. J.; Trussell, L. O., Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 2009, 61 (2), 259-271.
106. Haan, N.; Song, B., Therapeutic application of electric fields in the injured nervous system. Advances in wound care 2014, 3 (2), 156-165.
107. Thrivikraman, G.; Boda, S. K.; Basu, B., Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2018, 150, 60-86.
108. McKight, P. E.; Najab, J., Kruskal‐Wallis Test. The corsini encyclopedia of psychology 2010, 1-1.
109. Greene, L. A., Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. The Journal of cell biology 1978, 78 (3), 747-755.
110. Mukhatyar, V. J.; Salmerón-Sánchez, M.; Rudra, S.; Mukhopadaya, S.; Barker, T. H.; García, A. J.; Bellamkonda, R. V., Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 2011, 32 (16), 3958-3968.
111. Xie, J.; Liu, W.; MacEwan, M. R.; Bridgman, P. C.; Xia, Y., Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS nano 2014, 8 (2), 1878-1885.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71853-
dc.description.abstract本論文旨在設計一種以聚肽為基礎的高分子聚電解質,並經由靜電紡絲形成3D且順向排列的纖維狀支架,應用於神經組織工程。該材料可經由傳統化學方式所合成,具有導離性 (ionic conductivity),還含有可刺激神經細胞的生物因子:谷氨酸,而順向排列的纖維可用於引導軸突沿著一定的方向生長,是一種可以幫助神經再生的生醫材料。
我們先合成聚谷氨酸苯酯 (poly(γ-benzyl-L-glutamate), PBG),再進一步將PBG上的酯基進行部分水解,得到谷氨酸苯酯-谷氨酸無規共聚物 (poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid), PBGA)。我們利用靜電紡絲將PBGA製成3D且順向排列的纖維狀支架,再將PBGA支架上的羧酸基與氫氧化鈉反應,得到聚肽電解質的支架: sodium salt of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA-Na)。當水解度為20莫耳百分率時,所產生的聚肽電解質 (即PBGA20-Na) 不溶於水,於細胞培養過程中可保持纖維的順向排列。因此,本研究將利用此支架「具導離性、順向排列、含生物因子」的優點培養神經細胞,並探討在有或無電刺激下,神經細胞在該材料上的生長以及分化情形。
三種以PBG為基礎的生醫材料,相較於常見的聚己內酯 (polycaprolactone, PCL),具有更佳的生物相容性,可誘發更好的細胞貼附、生長以及分化。此外,細胞在含有谷氨酸的聚肽上(即PBGA20和PBGA20-Na),相對於未含谷氨酸的PBG,有更好的細胞貼附、生長以及分化能力。細胞於這些材料上的軸突分化能力,皆可透過電刺激而提升,軸突的生長還可受到順向排列的纖維所引導,呈現單一方向性生長。最後,具有導離性且含有谷氨酸的聚肽高分子電解質: PBGA20-Na,最能誘導細胞進行軸突的分化,非常適合應用於神經組織工程。
zh_TW
dc.description.abstractThe goal of this research is to design a peptide-based polyelectrolyte containing neuronal stimulant (i.e., glutamic acid) for the fabrication of electroactive 3D fibrous scaffold with aligned fibers for neural tissue engineering.
The polypeptides are designed based on biocompatible poly(γ-benzyl-L-glutamate) (PBG), which can be synthesized easily by conventional ring opening polymerization reaction. Partial hydrolysis of the benzyl groups in PBG yields a random copolymer of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA). By using electrospinning technique, we fabricate PBGA fibrous scaffold with aligned fibers. The scaffold made of peptide-based polyelectrolyte, sodium salt of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA-Na), is obtained by reacting the COOH groups in PBGA scaffold with NaOH aqueous solution.
The PBGA-Na with 20 mol% of COO-Na+ side chains (i.e., PBGA20-Na) is water-insoluble, which can maintain the aligned structure of the fibrous scaffold and stimulate neurite outgrowth in alignment. Hence, in this thesis, we focus on culturing neurons on this aligned, electroactive and neuronal stimulant-contained fibrous scaffold. We also discuss the proliferation and differentiation of neurons on this scaffold with or without electrical stimulation.
The biocompatibility of PBG, PBGA20 and PBGA20-Na are significantly better than polycaprolactone (PCL). Furthermore, the integration of neuronal stimulant into polypeptides (i.e., PBGA20 and PBGA20-Na) shows an enhancement of cell adhesion, proliferation and differentiation. Cells on all the materials tested in this thesis extend longer neurites with electrical stimulation than without stimulation. According to the results of the experiments, all the scaffolds with the aligned fibers can promote the growth of neurites along. Neurite outgrowth on the electroactive polypeptide containing glutamic acid (i.e., PBGA20-Na) is the longest among the four materials. In conclusion, PBGA20-Na is a unique and promising biomaterial for neural tissue engineering.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:12:11Z (GMT). No. of bitstreams: 1
ntu-107-R05527019-1.pdf: 5373960 bytes, checksum: 5c4b6de0b80f112cdf263652fc30771f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
Abstract ii
List of Figures vii
List of Tables xii
List of Schemes xiii
Chapter 1 Introduction 1
1.1 Neural tissue dysfunction 1
1.2 Tissue engineering 1
1.2.1 Natural extracellular matrix 2
1.2.2 Desired properties of artificial scaffolds 4
1.2.3 Recent studies in neural tissue engineering 6
1.2.4 Poly(γ-benzyl-L-glutamate) for tissue engineering 9
1.2.5 Polyelectrolytes for tissue engineering 11
1.3 The role of glutamic acid in synaptic transmission and neurogenesis 12
1.4 Mechanism of electrical stimulation on neurons 13
1.5 Introduction of PC12 cells 15
1.6 Motivation and objective 16
Chapter 2 Experimental Part 20
2.1 Chemicals, instruments and equipment 20
2.2 Nomenclature 23
2.3 Synthesis of poly(γ-benzyl-L-glutamate) (PBG) 24
2.3.1 Preparation of monomer: γ-benzyl-L-glutamate NCA (BGNCA) 24
2.3.2 Polymerization 25
2.4 Synthesis of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA) 26
2.5 Synthesis of sodium salt of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA-Na) 27
2.5.1 Solution-based procedure 27
2.5.2 Solid-based procedure 28
2.6 Fabrication of polymer film by blade coating method 29
2.7 Fabrication of 3D scaffold with aligned fibers by electrospinning 29
2.8 Characterization methods for chemical structures of materials 31
2.9 Characterization method for hydrophilicity of materials 31
2.10 Characterization method for electrochemical properties of materials 32
2.10.1 Electrochemical properties of polymer solution 32
2.10.2 Electrochemical properties of polymer scaffold 33
2.11 Characterization method for scaffold morphology 34
2.12 Characterization method for scaffold density 34
2.13 Characterization method for scaffold degradability 35
2.14 Procedure for cell culture study 36
2.15 Characterization methods for cytotoxicity of materials 39
2.16 Characterization method for cell viability on materials 39
2.17 Characterization method for cell differentiation on materials 40
2.18 Characterization method for cell morphology on scaffolds 42
Chapter 3 Results and Discussion 43
3.1 Polymer synthesis and characterization 43
3.1.1 Synthetic scheme and reaction yield 43
3.1.2 Characterization of γ-benzyl-L-glutamate NCA (BGNCA) 47
3.1.3 Characterization of poly(γ-benzyl-L-glutamate) (PBG) 49
3.1.4 Characterization of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA) 51
3.1.5 Characterization of sodium salt of poly(γ-benzyl-L-glutamate)-r-poly(α-L-glutamic acid) (PBGA-Na) 53
3.2 Hydrophilicity of polymer thin film 55
3.3 Electrochemical properties 57
3.3.1 Ionic conductivity of polymer solutions 57
3.3.2 Electrochemical impedance of polymer scaffolds 58
3.4 Morphology of scaffolds 62
3.5 Degradation of scaffolds 64
3.6 PC12 cell live/dead on scaffold 67
3.7 PC12 cell viability on scaffold 71
3.8 PC12 cell differentiation on scaffold 74
3.8.1 Neurite outgrowth of PC12 cells without electrical stimulation 74
3.8.2 Neurite outgrowth of PC12 cells with electrical stimulation 78
3.8.3 The alignment of PC12 neurites 88
3.8.4 The morphology of differentiated PC12 cells on scaffolds 90
3.8.5 The 3D distribution of differentiated PC12 cells on scaffolds 91
Chapter 4 Conclusion 93
Chapter 5 Recommendation and Future Work 94
References 95
dc.language.isoen
dc.subject神經再生zh_TW
dc.subject電刺激zh_TW
dc.subject聚電解質zh_TW
dc.subject谷氨酸zh_TW
dc.subject聚?zh_TW
dc.subject組織工程zh_TW
dc.subjectglutamateen
dc.subjecttissue engineeringen
dc.subjectpolypeptideen
dc.subjectelectrical stimulationen
dc.subjectpolyelectrolyteen
dc.subjectneuron regenerationen
dc.title用於神經組織工程的聚肽電解質zh_TW
dc.titlePeptide-based Polyelectrolyte for Neural Tissue Engineeringen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡豐羽,趙基揚,陳達慶,唐堂
dc.subject.keyword神經再生,組織工程,聚?,電刺激,聚電解質,谷氨酸,zh_TW
dc.subject.keywordneuron regeneration,tissue engineering,polypeptide,electrical stimulation,polyelectrolyte,glutamate,en
dc.relation.page103
dc.identifier.doi10.6342/NTU201804211
dc.rights.note有償授權
dc.date.accepted2018-10-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved