Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor樓國隆(Kuo-Long Lou)
dc.contributor.authorMeng-Hsuan Hsiehen
dc.contributor.author謝孟炫zh_TW
dc.date.accessioned2021-06-17T06:12:06Z-
dc.date.available2028-12-31
dc.date.copyright2018-10-22
dc.date.issued2018
dc.date.submitted2018-10-17
dc.identifier.citation1. Chen, F. Y.; Lee, M. T.; Huang, H. W. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 2003, 84 (6), 3751-8.
2. Huang, H. W.; Chen, F. Y.; Lee, M. T. Molecular mechanism of Peptide-induced pores in membranes. Phys Rev Lett 2004, 92 (19), 198304.
3. Lee, M. T.; Hung, W. C.; Chen, F. Y.; Huang, H. W. Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation. Biophys J 2005, 89 (6), 4006-16.
4. Lee, M. T.; Hung, W. C.; Chen, F. Y.; Huang, H. W. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc Natl Acad Sci U S A 2008, 105 (13), 5087-92.
5. Kumar, T. K.; Jayaraman, G.; Lee, C. S.; Arunkumar, A. I.; Sivaraman, T.; Samuel, D.; Yu, C. Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn 1997, 15 (3), 431-63.
6. Romi-Lebrun, R.; Lebrun, B.; Martin-Eauclaire, M. F.; Ishiguro, M.; Escoubas, P.; Wu, F. Q.; Hisada, M.; Pongs, O.; Nakajima, T. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels. Biochemistry 1997, 36 (44), 13473-82.
7. Swartz, K. J.; MacKinnon, R. An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 1995, 15 (4), 941-9.
8. Swartz, K. J.; MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 1997, 18 (4), 665-73.
9. Lee, C. W.; Kim, S.; Roh, S. H.; Endoh, H.; Kodera, Y.; Maeda, T.; Kohno, T.; Wang, J. M.; Swartz, K. J.; Kim, J. I. Solution structure and functional characterization of SGTx1, a modifier of Kv2.1 channel gating. Biochemistry 2004, 43 (4), 890-7.
10. Jung, H. J.; Lee, J. Y.; Kim, S. H.; Eu, Y. J.; Shin, S. Y.; Milescu, M.; Swartz, K. J.; Kim, J. I. Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 2005, 44 (16), 6015-23.
11. Milescu, M.; Vobecky, J.; Roh, S. H.; Kim, S. H.; Jung, H. J.; Kim, J. I.; Swartz, K. J. Tarantula toxins interact with voltage sensors within lipid membranes. J Gen Physiol 2007, 130 (5), 497-511.
12. Mihailescu, M.; Krepkiy, D.; Milescu, M.; Gawrisch, K.; Swartz, K. J.; White, S. Structural interactions of a voltage sensor toxin with lipid membranes. Proc Natl Acad Sci U S A 2014, 111 (50), E5463-70.
13. Nishizawa, M.; Nishizawa, K. Interaction between K+ channel gate modifier hanatoxin and lipid bilayer membranes analyzed by molecular dynamics simulation. Eur Biophys J 2006, 35 (5), 373-81.
14. Swartz, K. J.; MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 1997, 18 (4), 675-82.
15. Li-Smerin, Y.; Swartz, K. J. Localization and molecular determinants of the Hanatoxin receptors on the voltage-sensing domains of a K(+) channel. J Gen Physiol 2000, 115 (6), 673-84.
16. Takahashi, H.; Kim, J. I.; Min, H. J.; Sato, K.; Swartz, K. J.; Shimada, I. Solution structure of hanatoxin1, a gating modifier of voltage-dependent K(+) channels: common surface features of gating modifier toxins. J Mol Biol 2000, 297 (3), 771-80.
17. Xiao, Y.; Luo, X.; Kuang, F.; Deng, M.; Wang, M.; Zeng, X.; Liang, S. Synthesis and characterization of huwentoxin-IV, a neurotoxin inhibiting central neuronal sodium channels. Toxicon 2008, 51 (2), 230-9.
18. Killian, J. A.; von Heijne, G. How proteins adapt to a membrane-water interface. Trends in biochemical sciences 2000, 25 (9), 429-34.
19. Huang, P. T.; Shiau, Y. S.; Lou, K. L. The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon 2007, 49 (2), 285-92.
20. Phillips, L. R.; Milescu, M.; Li-Smerin, Y.; Mindell, J. A.; Kim, J. I.; Swartz, K. J. Voltage-sensor activation with a tarantula toxin as cargo. Nature 2005, 436 (7052), 857-60.
21. Huang, P. T.; Chen, T. Y.; Tseng, L. J.; Lou, K. L.; Liou, H. H.; Lin, T. B.; Spatz, H. C.; Shiau, Y. Y. Structural influence of hanatoxin binding on the carboxyl terminus of S3 segment in voltage-gated K(+)-channel Kv2.1. Recept Channels 2002, 8 (2), 79-85.
22. Hoshi, T.; Zagotta, W. N.; Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990, 250 (4980), 533-8.
23. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 2002, 419 (6902), 35-42.
24. Deutsch, C.; Chen, L. Q. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci U S A 1993, 90 (21), 10036-40.
25. Pal, S. K.; Takimoto, K.; Aizenman, E.; Levitan, E. S. Apoptotic surface delivery of K+ channels. Cell Death Differ 2006, 13 (4), 661-7.
26. Yellen, G. The moving parts of voltage-gated ion channels. Q Rev Biophys 1998, 31 (3), 239-95.
27. Armstrong, C. M. Voltage-gated K channels. Sci STKE 2003, 2003 (188), re10.
28. Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae 2014, 6 (4), 10-26.
29. Milescu, M.; Lee, H. C.; Bae, C. H.; Kim, J. I.; Swartz, K. J. Opening the shaker K+ channel with hanatoxin. J Gen Physiol 2013, 141 (2), 203-16.
30. Ikeda, M.; Tomita, Y.; Mouri, A.; Koga, M.; Okochi, T.; Yoshimura, R.; Yamanouchi, Y.; Kinoshita, Y.; Hashimoto, R.; Williams, H. J.; Takeda, M.; Nakamura, J.; Nabeshima, T.; Owen, M. J.; O'Donovan, M. C.; Honda, H.; Arinami, T.; Ozaki, N.; Iwata, N. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 2010, 67 (3), 263-9.
31. Jiang, Y.; Lee, A.; Chen, J.; Ruta, V.; Cadene, M.; Chait, B. T.; MacKinnon, R. X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423 (6935), 33-41.
32. Lee, S. Y.; MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 2004, 430 (6996), 232-5.
33. Shiau, Y. S.; Huang, P. T.; Liou, H. H.; Liaw, Y. C.; Shiau, Y. Y.; Lou, K. L. Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels. Chem Res Toxicol 2003, 16 (10), 1217-25.
34. Ruta, V.; MacKinnon, R. Localization of the voltage-sensor toxin receptor on KvAP. Biochemistry 2004, 43 (31), 10071-9.
35. Gill, S. C.; von Hippel, P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 1989, 182 (2), 319-26.
36. Ludtke, S.; He, K.; Huang, H. Membrane thinning caused by magainin 2. Biochemistry 1995, 34 (51), 16764-9.
37. Blaurock, A. E. Structure of the nerve myelin membrane: proof of the low-resolution profile. J Mol Biol 1971, 56 (1), 35-52.
38. Torbet, J.; Wilkins, M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol 1976, 62 (2), 447-58.
39. Wu, Y.; He, K.; Ludtke, S. J.; Huang, H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 1995, 68 (6), 2361-9.
40. James, M.; Nelson, A.; Holt, S. A.; Saerbeck, T.; Hamilton, W. A.; Klose, F. The multipurpose time-of-flight neutron reflectometer “Platypus” at Australia's OPAL reactor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011, 632 (1), 112-123.
41. Kennedy, S. J. Construction of the neutron beam facility at Australia's OPAL research reactor. Physica B: Condensed Matter 2006, 385-386 (0), 949-954.
42. Nelson, A. Co-refinement of multiple-contrast neutron/X-ray reflectivity data usingMOTOFIT. J Appl Crystallogr 2006, 39 (2), 273-276.
43. Lomize, M. A.; Lomize, A. L.; Pogozheva, I. D.; Mosberg, H. I. OPM: orientations of proteins in membranes database. Bioinformatics 2006, 22 (5), 623-5.
44. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics 1993, 98 (12), 10089-10092.
45. Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater Scalability for Parallel Molecular Dynamics. J Comput Phys 1999, 151 (1), 283-312.
46. Jo, S.; Kim, T.; Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2007, 2 (9), e880.
47. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J Mol Graph 1996, 14 (1), 33-8, 27-8.
48. Lou, K. L.; Hsieh, M. H.; Chen, W. J.; Cheng, Y. C.; Jian, J. N.; Lee, M. T.; Lin, T. L.; Shiau, Y. S.; Liou, H. H. Hanatoxin inserts into phospholipid membranes without pore formation. Biochim Biophys Acta Biomembr 2017, 1859 (5), 917-923.
49. Ruta, V.; Jiang, Y.; Lee, A.; Chen, J.; MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 2003, 422 (6928), 180-5.
50. King, G. I.; White, S. H. Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J 1986, 49 (5), 1047-54.
51. Kessner, D.; Kiselev, M. A.; Hauss, T.; Dante, S.; Wartewig, S.; Neubert, R. H. Localisation of partially deuterated cholesterol in quaternary SC lipid model membranes: a neutron diffraction study. Eur Biophys J 2008, 37 (6), 1051-7.
52. Krepkiy, D.; Mihailescu, M.; Freites, J. A.; Schow, E. V.; Worcester, D. L.; Gawrisch, K.; Tobias, D. J.; White, S. H.; Swartz, K. J. Structure and hydration of membranes embedded with voltage-sensing domains. Nature 2009, 462 (7272), 473-9.
53. Lou, K. L.; Huang, P. T.; Shiau, Y. S.; Shiau, Y. Y. Molecular determinants of the hanatoxin binding in voltage-gated K+-channel drk1. J Mol Recognit 2002, 15 (4), 175-9.
54. Nishizawa, M.; Nishizawa, K. Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field. Biophys J 2008, 95 (4), 1729-44.
55. Fernandez, D. I.; Sani, M. A.; Miles, A. J.; Wallace, B. A.; Separovic, F. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. Biochim Biophys Acta 2013, 1828 (8), 1863-72.
56. Sani, M. A.; Gagne, E.; Gehman, J. D.; Whitwell, T. C.; Separovic, F. Dye-release assay for investigation of antimicrobial peptide activity in a competitive lipid environment. Eur Biophys J 2014, 43 (8-9), 445-50.
57. Wieprecht, T.; Apostolov, O.; Beyermann, M.; Seelig, J. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 2000, 39 (2), 442-52.
58. Fernandez-Vidal, M.; White, S. H.; Ladokhin, A. S. Membrane partitioning: 'classical' and 'nonclassical' hydrophobic effects. J Membr Biol 2011, 239 (1-2), 5-14.
59. Su, C. J.; Wu, S. S.; Jeng, U. S.; Lee, M. T.; Su, A. C.; Liao, K. F.; Lin, W. Y.; Huang, Y. S.; Chen, C. Y. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering. Biochim Biophys Acta 2013, 1828 (2), 528-34.
60. Kucerka, N.; Liu, Y.; Chu, N.; Petrache, H. I.; Tristram-Nagle, S.; Nagle, J. F. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 2005, 88 (4), 2626-37.
61. Harroun, T. A.; Heller, W. T.; Weiss, T. M.; Yang, L.; Huang, H. W. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 1999, 76 (2), 937-45.
62. Hung, W. C.; Chen, F. Y.; Huang, H. W. Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine. Biochim Biophys Acta 2000, 1467 (1), 198-206.
63. Lee, M. T.; Chen, F. Y.; Huang, H. W. Energetics of pore formation induced by membrane active peptides. Biochemistry 2004, 43 (12), 3590-9.
64. Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim Biophys Acta 2000, 1469 (3), 159-95.
65. Hung, W.-C.; Chen, F.-Y. The hydrophobic-hydrophilic interface of phospholipid membranes studied by lamellar X-ray diffraction. Chinese Journal of Physics 2003, 41 (1), 85-91.
66. Hsieh, M. H.; Shiau, Y. S.; Liou, H. H.; Jeng, U. S.; Lee, M. T.; Lou, K. L. Measurement of Hanatoxin-Induced Membrane Thinning with Lamellar X-ray Diffraction. Langmuir 2017, 33 (11), 2885-2889.
67. Freites, J. A.; Tobias, D. J.; von Heijne, G.; White, S. H. Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci U S A 2005, 102 (42), 15059-64.
68. Bemporad, D.; Sands, Z. A.; Wee, C. L.; Grottesi, A.; Sansom, M. S. Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers. Biochemistry 2006, 45 (39), 11844-55.
69. Wee, C. L.; Gavaghan, D.; Sansom, M. S. Interactions between a voltage sensor and a toxin via multiscale simulations. Biophys J 2010, 98 (8), 1558-65.
70. Darre, L.; Iglesias-Fernandez, J.; Kohlmeyer, A.; Wacklin, H.; Domene, C. Molecular dynamics simulations and neutron reflectivity as an effective approach to characterize biological membranes and related macromolecular assemblies. J Chem Theory Comput 2015, 11 (10), 4875-84.
71. Hsieh, M. H.; Huang, P. T.; Liou, H. H.; Liang, P. H.; Chen, P. M.; Holt, S. A.; Yu, I. F.; James, M.; Shiau, Y. S.; Lee, M. T.; Lin, T. L.; Lou, K. L. The Penetration Depth for Hanatoxin Partitioning into the Membrane Hydrocarbon Core Measured with Neutron Reflectivity. Langmuir 2018, 34 (30), 9036-9046.
72. Hessa, T.; Meindl-Beinker, N. M.; Bernsel, A.; Kim, H.; Sato, Y.; Lerch-Bader, M.; Nilsson, I.; White, S. H.; von Heijne, G. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007, 450 (7172), 1026-30.
73. DeLano, W. L. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. 2002.
74. Shih, Y.-W. Kinetic Study of Interaction between Voltage-Gated K+-channels and Toxins from Spider Venom. Master Master Thesis, National Taiwan University, 2005.
75. Huang, P.-T. I. Investigation on the Interaction of Spider Gating Modifier Peptides with Voltage-gated Potassium Channels II. Structural Analysis and Biochemical Identification of the Molecular Targets for the Unique Insecticidal Activity of Mungbean Defensin VrD1. PhD Doctoral Dissertation, National Taiwan University, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71851-
dc.description.abstractHanatoxin (HaTx) 是由蜘蛛分泌的神經毒性胜肽,可抑制鉀離子通道蛋白的功能,此胜肽會先與細胞膜磷脂質作用後再與膜內的鉀離子通道蛋白電壓感應片段作用來達到抑制的功能。由於深埋於膜內的電壓感應片段會隨著膜電位的變化藉由運動進而改變其所在位置,但是此類水溶性的胜肽如何改變電壓感應的機制仍不清楚。此外,由此類胜肽所造成的膜擾動機制亦尚未明瞭。因此,我們提出一系列的生物物理及生物化學的方法來了解HaTx和膜作用時可能的動態運動模式。首先,為了釐清HaTx與膜結合的細節,利用單層膜模擬雙層膜的外層,觀察到HaTx會進入至磷脂質的疏水長碳鏈中。再進一步了解有關膜的生物物理性質,也就是探究HaTx如何造成脂質雙層膜的擾動。在接近完全水合的狀態下,利用多層膜X光繞射來觀察膜厚度的變化。最後以中子反射來定性量測HaTx穿入膜的深度,來了解其穿入深度與電壓感應片段作用位置的相互關係。實驗證明HaTx可穿透膜表面而進入疏水長碳鏈 (從膜表面往內估算大約~9 Å處),與先前研究的VSTx比較,其作用於膜表面的方式不同。兩者的差異在於穿入膜的深度不同,可藉由此深度來推估其對應的電壓感應片段位於膜內不同位置,進而解釋兩種鉀通道蛋白不同的抑制效應。此外,透過HaTx穿入膜深度的實驗數據進行分子模擬 (MD-simulations) 可以清楚顯示HaTx與膜作用時的適當結合位向,此與快速動力學(stopped-flow analysis)所提供的結果一致。綜合以上實驗結果,可以詳細描述HaTx與細胞膜的相互作用,進而瞭解並闡明鉀離子通道的抑制機制。zh_TW
dc.description.abstractHanatoxin (HaTx) from spider venom functions as an inhibitor of Kv2.1 channels, most likely by interacting with phospholipids prior to affecting the voltage-sensor (VS). However, how the water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer, although it would change its position depending on the membrane potential. Furthermore, membrane perturbation induced by cysteine-rich peptides is a crucial biological phenomenon but scarcely investigated. As a result, we proposed a series of effective biophysical-chemical methodologies to illustrate the possible dynamic scenario of HaTx prior to binding and embedded within membranes. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Getting a close step to understand the details of membrane biophysics, in other words, to see how HaTx interacts with phospholipid bilayers, we observe the toxin-induced perturbation on POPC/DOPG-membranes through measurements of the change in membrane thickness via Lamellar X-ray diffraction (LXD) on stacked planar bilayers in the near-fully hydrated state. Quantitatively, to see whether HaTx can indeed bind to the voltage-sensor, the depth at which HaTx penetrates into the POPC-membrane was measured with neutron reflectivity. Our current results successfully demonstrate that HaTx penetrates into the membrane hydrocarbon core (~9 Å from the membrane surface), not lying on the membrane-water interface as reported for another voltage-sensor toxin (VSTx). This difference in penetration depth suggests that the two toxins fix the voltage-sensors at different positions with respect to the membrane normal, thereby explaining their different inhibitory effects on the channels. In particular, results from MD-simulations constrained by our penetration data clearly demonstrate an appropriate orientation for HaTx to interact with the membrane, which is in line with the biochemical information derived from stopped-flow analysis through the delineation of the toxin-VS binding interface. To summarize all of current results, we can speculate the inhibitory mechanism of Kv channels through the detailed interactions between HaTx and membranes.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:12:06Z (GMT). No. of bitstreams: 1
ntu-107-D00642008-1.pdf: 3296998 bytes, checksum: 6076149d08aabfc4268703b1c33e97b7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
Abstract II
Graphical Abstract IV
List of Figures VII
List of Tables VIII
Chapter 1 Introduction 1
1.1 Gating-Modifier Toxins 1
1.2 Voltage-Gated Potassium Channels 3
1.3 Peptide-Membrane Interactions 4
Chapter 2 Materials and Methods 7
2.1 Materials 7
2.2 Methods 7
2.2.1 Toxin Production 7
2.2.2 Langmuir Trough Experiments 8
2.2.3 Lamellar X-ray Diffraction (LXD) Data Acquisition and Analysis 10
2.2.4 Surface Pressure–Area Measurements and Neutron Reflectometry 11
2.2.5 Molecular Dynamics Simulations 13
Chapter 3 Results 14
3.1 Constant-Pressure Insertion Isotherms of HaTx with Different Phospholipid Compositions 15
3.2 Toxin-Induced Membrane Thinning 16
3.3 Penetration Depth for HaTx Partitioning Measured with Neutron Reflectivity 18
3.4 Determination of Binding Orientations 21
Chapter 4 Discussion 24
4.1 Properties of Phospholipids for HaTx-Binding 24
4.2 The Effects of Charged Lipids 26
4.3 Ap Calculations for HaTx 27
4.4 Speculation of the Movements of Voltage Sensor of Kv Channel 33
Chapter 5 Conclusions 38
References 40
Figures 46
Tables 72
Appendix 75
dc.language.isoen
dc.title利用生物物理的方法研究蜘蛛電壓調控毒蛋白與脂膜之交互作用zh_TW
dc.titleBiophysical Studies of Interactions between Gating-Modifier Tarantula Toxins and Membranesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.coadvisor李明道(Ming-Tao Lee)
dc.contributor.oralexamcommittee林滄浪(Tsang-Lang Lin),徐駿森(Chun-Hua Hsu),劉?睿(Je-Ruei Liu),楊健志(Chien-Chih Yang)
dc.subject.keywordHaTx,鉀離子通道蛋白,細胞膜磷脂質,多層膜X光繞射,中子反射,分子模擬,抑制機制,zh_TW
dc.subject.keywordHaTx,Kv2.1 channels,phospholipids,Lamellar X-ray diffraction,neutron reflectivity,MD-simulations,inhibitory mechanism,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201804222
dc.rights.note有償授權
dc.date.accepted2018-10-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved