Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71844
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃美嬌(Mei-Jiau Huang)
dc.contributor.authorChiang Kaoen
dc.contributor.author高強zh_TW
dc.date.accessioned2021-06-17T06:11:51Z-
dc.date.available2021-11-08
dc.date.copyright2018-11-08
dc.date.issued2018
dc.date.submitted2018-10-19
dc.identifier.citation1. Mikhailov MD, Freire APS. The drag coefficient of a sphere: An approximation using Shanks transform. Powder Technology. 2013;237:432-5.
2. Curtis AR, Marr GR. The viscous drag on cylinders falling symmetrically between parallel walls. Journal of Physics D: Applied Physics. 1978;11(8):1173.
3. Champmartin S, Ambari A. Kinematics of a symmetrically confined cylindrical particle in a “Stokes-type” regime. 2007;19(7):073303.
4. Semin B, Hulin JP, Auradou H. Influence of flow confinement on the drag force on a static cylinder. 2009;21(10):103604.
5. Rajani BN, Kandasamy A, Majumdar S. Numerical simulation of laminar flow past a circular cylinder. Applied Mathematical Modelling. 2009;33(3):1228-47.
6. Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics. 1961;10(3):345-56.
7. Inoue O, Sakuragi A. Vortex shedding from a circular cylinder of finite length at low Reynolds numbers. 2008;20(3):033601.
8. Wu M-H, Wen C-Y, Yen R-H, Weng M-C, Wang A-B. Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. Journal of Fluid Mechanics. 2004;515:233-60.
9. Fornberg B. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics. 1980;98(4):819-55.
10. White CM. The drag of cylinders in fluids at slow speeds. 1946;186(1007):472-9.
11. F. Stalnaker J, G. Hussey R. Wall effects on cylinder drag at low Reynolds number1979.
12. Uhlherr PHT, Chhabra RP. Wall effect for the fall of spheres in cylindrical tubes at high reynolds number. 1995;73(6):918-23.
13. Rehimi F, Aloui F, Nasrallah SB, Doubliez L, Legrand J. Experimental investigation of a confined flow downstream of a circular cylinder centred between two parallel walls. Journal of Fluids and Structures. 2008;24(6):855-82.
14. Takaisi Y. The Drag on a Circular Cylinder moving with Low Speeds in a Viscous Liquid between Two Parallel Walls. Journal of the Physical Society of Japan. 1955;10(8):685-93.
15. Brenner H. The Stokes resistance of an arbitrary particle. Chemical Engineering Science. 1963;18(1):1-25.
16. Vasseur P, Cox RG. The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. Journal of Fluid Mechanics. 1977;80(3):561-91.
17. Zisis T, Mitsoulis E. Viscoplastic flow around a cylinder kept between parallel plates. Journal of Non-Newtonian Fluid Mechanics. 2002;105(1):1-20.
18. Münster R, Mierka O, Turek S. Finite element-fictitious boundary methods (FEM-FBM) for 3D particulate flow. 2012;69(2):294-313.
19. Lu L, Liu M-m, Teng B, Cui Z-d, Tang G-q, Zhao M, et al. Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number. Journal of Fluids and Structures. 2014;48:235-59.
20. Sahin M, Owens RG. A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. 2004;16(5):1305-20.
21. Singha S, Sinhamahapatra K. Flow past a circular cylinder between parallel walls at low Reynolds numbers2010. 757-69 p.
22. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics. 1994;271:285-309.
23. Dupuis A, Chatelain P, Koumoutsakos P. An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder %J J. Comput. Phys. 2008;227(9):4486-98.
24. Phan-Thien N, Fan X-J. Viscoelastic mobility problem using a boundary element method. Journal of Non-Newtonian Fluid Mechanics. 2002;105(2):131-52.
25. Kelmanson MA. Boundary integral equation solution of viscous flows with free surfaces. Journal of Engineering Mathematics. 1983;17(4):329-43.
26. F-L. Y. Interaction law for a collision between two solid particles in a viscous liquid. California Institute of Technology. 2006.
27. Izard E, Bonometti T, Lacaze L. Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid. Journal of Fluid Mechanics. 2014;747:422-46.
28. Chen L-C, Huang M-J. A DFFD simulation method combined with the spectral element method for solid-fluid-interaction problems %J J. Comput. Phys. 2017;330(C):749-69.
29. Glowinski R, Pan TW, Hesla TI, Joseph DD, Périaux J. A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow. Journal of Computational Physics. 2001;169(2):363-426.
30. Brenner JHaH. Low Reynolds Number Hydrodynamics. Martinus Nijhoff, Dordrecht. 1983.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71844-
dc.description.abstract本實驗主要利用陳立杰學長所開發的沉浸邊界法流固耦合模擬軟體,研究二維圓柱在不可壓縮黏性流場中,圓柱受重力自由沉降時的終端速度。分析各個物理參數(通道寬度、流固密度比與阿基米德數)對終端速度的影響,並歸納出終端速度對各項物理參數的經驗方程式。同時探討圓柱以終端速度接近地板時的地板耦合距離,分析通道寬度、密度比以及阿基米德數對地板耦合距離的影響,最後歸納出地板耦合距離對各項物理參數的經驗方程式。
圓柱的終端速度研究發現,終端速度對密度比與解析解具有相似的形式,而意外發現終端速度對阿基米德數在半對數圖中,具有很好的線性關係。最後擬合出終端速度的經驗方程式,此經驗方程式的方均根誤差為0.039。在地板耦合距離的研究,發現地板耦合距離對密度比與阿基米德數具有相似的影響,在全對數圖中皆有很好的線性關係,而有趣的發現地板耦合距離隨著通道寬度的增加而增加,但同時終端速度亦隨著通道寬度的增加而增加,而有終端速度越快而的地板耦合距離越大的現象,亦歸納出地板耦合距離經驗方程式,其方均根誤差為0.089。最後結合上述兩個經驗方程式討論史托克數對地板耦合距離的影響。
(適用範圍:Re: 0.14~126.94, 側牆寬度: 4D~16D) D: 圓柱直徑
zh_TW
dc.description.abstractWe investigate the terminal velocity and coupling distance of a free falling cylinder in viscous and incompressible flow, with the help of software simulator based on the immersed boundary method from previous work. We analyze the influence different physical parameters (Ex. density ratio, channel width, Archimedes number) have on terminal velocity and try to integrate an empirical equation of terminal velocity. We also observe the relation between coupling distance and above mentioned physical parameters in a simulation where the cylinder approaches the floor at terminal velocity, and integrate its empirical equation.
From these simulations, we observe that the relation between terminal velocity and density ratio remains similar to the analytical solution, even in a situation previously thought unfit for the analytical solution (at a higher Reynolds number.) We also observe that the terminal velocity and the Architecture number almost have a perfect linear relationship. The fitted empirical equation of terminal velocity has a root-mean-square error of 3.9%.
Regarding coupling distance, we can observe from the log-log graphs that density ratio and Architecture number have the same linear relationship with coupling distance. More importantly, we find that coupling distance increases with channel width, which induces the positive correlation between terminal velocity and coupling distance. The fitted empirical equation of coupling distance has a root-mean-square error of 8.9%.
At last, we combine the empirical equations to analyze the relation between Stokes number and coupling distance.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:11:51Z (GMT). No. of bitstreams: 1
ntu-107-R05522308-1.pdf: 4764720 bytes, checksum: f983818f6e97c439301da52cc05a6b93 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 諸論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 論文架構 2
第二章 終端速度與耦合距離理論 3
2-1蠕動流之終端速度 3
2-2 地板耦合距離 4
第三章 統御方程式與數値方法 7
3-1 統御方程式 7
3-2 DFFD (Direct Forcing Fictitious Domain) 法 8
3-3 固體數值方程式 10
3-4 頻譜元素法(Spectral Element Method) 11
第四章 數値模擬與討論 14
4-1 準確性與數值收斂性測試 15
4-1-1 準確性分析 15
4-1-2 收斂性測試 18
4-2 沉降圓柱終端速度分析與擬合 36
4-2-1 無因次分析 36
4-2-2初始狀態與邊界條件設定 39
4-2-3模擬結果 39
4-2-4終端速度之經驗方程式 44
4-2-5小結 51
4-3 沉降圓柱之地板耦合距離分析與擬合 52
4-3-1 無因次分析 52
4-3-2模擬結果 53
4-3-3耦合距離之經驗方程式 59
4-3-4小結 60
第五章 結論與未來展望 62
5-1 結論 62
參考文獻 65
附錄 67
dc.language.isozh-TW
dc.title不可壓縮黏性流中圓柱之終端速度與地板耦合距離模擬研究zh_TW
dc.titleTerminal Velocity and Coupling Distance of a Circular Cylinder in Viscous Incompressible Flowen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊馥菱(Fu-Ling Yang),莊嘉揚(Jia-Yang Juang),陳軍華(Chun-Hua Chen)
dc.subject.keyword終端速度,地板耦合距離,流固耦合,側牆效應,zh_TW
dc.subject.keywordTerminal velocity,Coupling Distance,Fluid-Structure Interaction,Wall Effect,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201804205
dc.rights.note有償授權
dc.date.accepted2018-10-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved