Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡
dc.contributor.authorPO-YA CHUen
dc.contributor.author朱博亞zh_TW
dc.date.accessioned2021-06-17T06:11:09Z-
dc.date.available2023-11-08
dc.date.copyright2018-11-08
dc.date.issued2018
dc.date.submitted2018-11-01
dc.identifier.citation[1] IEA, World Energy Balances 2018, Organization for Economic Publishing.
[2] IRENA , Renewable Energy Statistics 2018, International Renewable Energy Agency, Abu Dhabi.
[3] Sauvé, G. V.; Fernando, R. Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. The Journal of Physical Chemistry Letters 2015, 6, 3770-3780.
[4] Lin, Y.; Li, Y.; Zhan, X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews 2012, 41, 4245-4272.
[5] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chemical Reviews 2009, 109, 5868-5923.
[6] Nunzi, J. M. Organic photovoltaic materials and devices. Comptes Rendus Physique 2002, 3, 523-542.
[7] Brütting, W. Introduction to the physics of organic semiconductors. Wiley Online Library 2006.
[8] Kaltenbrunner, M.; Adam, G.; Glowacki, E. D.; Drack, M.; Schwodiauer, R.; Leonat, L.; Apaydin, D. H.; Groiss, H.; Scharber, M. C.; White, M. S.; Sariciftci, N. S.; Bauer, S. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032-1039.
[9] Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nature Energy 2018, 3, 422-427.
[10] Green, M. A. Third generation photovoltaics: Ultra high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications 2001, 9, 123-135.
[11] Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics 2018, 12, 131-142.
[12] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design rules for donors in bulkheterojunction solar cells—Towards 10% energy conversion efficiency. Advanced Materials 2006, 18, 789-794.
[13] Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11, 374-380.
[14] Shang, Y.; Li, Q.; Meng, L.; Wang, D.; Shuai, Z. Computational characterization of organic photovoltaic devices. Theoretical Chemistry Accounts 2011, 129, 291-301.
[15] Nalwa HS, Handbook of advanced electronic and photonic materials and devices: semiconductors. Vol. 1, Academic Press2001.
[16] Qi, B.; Wang, J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics 2013, 15, 8972-8982.
[17] Guo, X.; Zhou, N.; Lou, S. J.; Smith, J.; Tice, D. B.; Hennek, J. W.; Ortiz, R. P.; Navarrete, J. T. L.; Li, S.; Strzalka, J. Polymer solar cells with enhanced fill factors. Nature Photonics 2013, 7, 825-833.
[18] Yan, J.; Liang, Q.; Liu, K.; Miao, J.; Chen, H.; Liu, S.; He, Z.; Wu, H.; Wang, J.; Cao, Y. Optimized Phase Separation and Reduced Geminate Recombination in High Fill Factor Small-Molecule Organic Solar Cells. ACS Energy Letters 2016, 2, 14-21.
[19] Kang, J. W.; Lee, S. P.; Kim, D. G.; Lee, S.; Lee, G. H.; Kim, J. K.; Park, S. Y.; Kim, J. H.; Kim, H. K.; Jeong, Y. S. Reduction of series resistance in organic photovoltaic using low sheet resistance of ITO electrode. Electrochemical and Solid-State Letters 2009, 12, 64-66.
[20] Kim, M. S.; Kim, B. G.; Kim, J. Effective variables to control the fill factor of organic photovoltaic cells. ACS Applied Materials & Interfaces 2009, 1, 1264-1269.
[21] Morvillo, P.; Bobeico, E. Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study. Solar Energy Materials and Solar Cells 2008, 92, 1192-1198.
[22] Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics 2009, 3, 649-653.
[23] Ran, N. A.; Love, J. A.; Takacs, C. J.; Sadhanala, A.; Beavers, J. K.; Collins, S. D.; Huang, Y.; Wang, M.; Friend, R. H.; Bazan, G. C. Harvesting the full potential of photons with organic solar cells. Advanced Materials 2016, 28, 1282-1288.
[24] Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer Fullerene bulk heterojunction solar cells, Advanced Materials 2009, 21, 1323-1338.
[25] Atkins, P. W. Physical Chemistry. Oxford University Press, Oxford 1994, 5.
[26] Atkins, P. W.; Friedman, R. S. Molecular Quantum Mechanics. Oxford University Press, Oxford 1997, 3.
[27] Klessinger, M.; Michl, J. Excited States and Photochemistry of OrganicMolecules. VCH, New York 1995, 1.
[28] Lever, A. B. P. Inorganic Electronic Spectroscopy. Elsevier,Amsterdam 1984, 2.
[29] Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nature Materials 2009, 8, 904-909.
[30] Peng, H.; Sun, X.; Weng, W.; Fang, X. Polymer Materials for Energy and Electronic Applications. Academic Press 2016.
[31] Wang, Q.; Zhang, S.; Xu, B.; Ye, L.; Yao, H.; Cui, Y.; Zhang, H.; Yuan, W.; Hou, J. Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry–An Asian Journal 2016, 11, 2650-2655.
[32] Wynands, D.; Levichkova, M.; Riede, M.; Pfeiffer, M.; Baeuerle, P.; Rentenberger, R.; Denner, P.; Leo, K. Correlation between morphology and performance of low bandgap oligothiophene: C60 mixed heterojunctions in organic solar cells. Journal of Applied Physics 2010, 107, 514-517.
[33] Duren, J. K. V.; Yang, X.; Loos, J.; Lieuwma, C. W. B.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. Relating the morphology of poly (p-phenylene vinylene)/ methanofullerene blends to solar cell performance. Advanced Functional Materials 2004, 14, 425-434.
[34] Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Nanoscale morphology of conjugated polymer/fullerene based bulk heterojunction solar cells. Advanced Functional Materials 2004, 14, 1005-1011.
[35] Nam, C. Y.; Wu, Q.; Su, D.; Chiu, C. Y.; Tremblay, N. J.; Nuckolls, C.; Black, C. T. Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices. Journal of Applied Physics 2011, 110, 064307.
[36] Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chemical Reviews 2010, 110, 6736-6767.
[37] Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts of Chemical Research 2012, 45, 723-733.
[38] Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chemical Reviews 2007, 107, 1324-1338.
[39] Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials 2007, 6, 497-500.
[40] Singh, R.; Kushwaha, O. Progress towards efficiency of polymer solar cells. Nature 2017, 8, 2-7.
[41] Hu, Z.; Ying, L.; Huang, F.; Cao, Y. Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Science China Chemistry 2017, 60, 571-582.
[42] Jagadamma, L. K.; Senani, M. A.; Labban, A. E.; Gereige, I.; Ndjawa, N.; Guy, O.; Faria, J. C.; Kim, T.; Zhao, K.; Cruciani, F. Polymer Solar Cells with Efficiency> 10% Enabled via a Facile Solution Processed Al Doped ZnO Electron Transporting Layer,.Advanced Energy Materials 2015, 5, 1500204.
[43] He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Physical Chemistry Chemical Physics 2011,13, 1970-1983.
[44] Vogelbaum, H. S.; Sauvé, G. Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review. Synthetic Metals 2017, 22, 107-121.
[45] Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008, 92, 686-714.
[46] Lin, Y.; Zhan, X. Designing Efficient Non-Fullerene Acceptors by Tailoring Extended Fused-Rings with Electron-Deficient Groups. Advanced Energy Materials 2015, 5, 1501063.
[47] Liu, F.; Zhou, Z.; Zhang, C.; Vergote, T.; Fan, H.; Liu, F.; Zhu, X. A Thieno[3,4-b]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells. J. Am. Chem. Soc. 2016,138, 5523-5526.
[48] Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. J. Am. Chem. Soc. 2016, 138, 2973-2976.
[49] Lin, Y.; Zhang, Z. G.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D.; Zhan, X. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy & Environmental Science 2015, 8, 610-616.
[50] Lin, H.; Chen, S.; Li, Z.; Lai, J. Y.; Yang, G.; McAfee, T.; Jiang, K.; Li, Y.; Liu, Y.; Hu, H.; Zhao, J.; Ma, W.; Ade, H.; Yan, H. High-Performance Non-Fullerene Polymer Solar Cells Based on a Pair of Donor-Acceptor Materials with Complementary Absorption Properties. Adv Mater 2015, 27, 7299-7304.
[51] Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016, 7, 11585.
[52] Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170-1174.
[53] Bai, H.; Wang, Y.; Cheng, P.; Wang, J.; Wu, Y.; Hou, J.; Zhan, X. An electron acceptor based on indacenodithiophene and 1, 1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. Journal of Materials Chemistry A 2015, 3, 1910-1914.
[54] Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28,4734-4739.
[55] Yu, Y. Y.; Tsai, T. W.; Yang, C. C.; Chen, C. P. Highly Efficient Non-Fullerene Organic Photovoltaics Processed from o-Xylene without Using Additives. The Journal of Physical Chemistry C 2017, 121, 21969-21974.
[56] Chen, W.; Zhang, Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry C 2017, 5, 1275-1302.
[57] Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu,Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D. High-performance electron acceptor with thienyl side chains for organic photovoltaics. Journal of the American Chemical Society 2016, 138, 4955-4961.
[58] Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells. Journal of the American Chemical Society 2016, 138, 15011-15018.
[59] Li, Y.; Liu, X.; Wu, F. P.; Zhou, Y.; Jiang, Z. Q.; Song, B.; Xia, Y.; Zhang, Z. G.; Gao, F.; Inganäs, O. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A 2016, 4, 5890-5897.
[60] Li, Y.; Qian, D.; Zhong, L.; Lin, J. D.; Jiang, Z. Q.; Zhang, Z. G.; Zhang, Z.; Li, Y.; Liao, L. S.; Zhang, F. A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy 2016, 27, 430-438.
[61] Qiu, N.; Zhang, H.; Wan, X.; Li, C.; Ke, X.; Feng, H.; Kan, B.; Zhang, H.; Zhang, Q.; Lu, Y. A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for High Performance Organic Solar Cells. Advanced Materials 2017, 29, 1604964.
[62] Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy Level Modulation of Small Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells, Advanced Materials 2016, 28, 9423-9429.
[63] Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Ade, H.; Hou, J. Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Small-Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials 2017, 7, 1700183.
[64] Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Adv. Mater. 2016, 28, 9423-9429.
[65] Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J. Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors. Adv. Mater. 2018, 30, 1800613.
[66] Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Adv. Mater. 2018, 30, 1800868.
[67] Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148-7151.
[68] Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. n-Type organic semiconductors in organic electronics. Adv. Mater. 2010, 22, 3876-3892.
[69] Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. J. Am. Chem. Soc. 2017, 139, 1336-1343.
[70] Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119-128.
[71] Ke, X.; Kan, B.; Wan, X.; Wang, Y.; Zhang, Y.; Li, C.; Chen, Y. Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes and Pigments 2018, 155, 241-248.
[72] Li, S.; Liu, W.; Li, C. Z.; Shi, M.; Chen, H. Efficient Organic Solar Cells with Non-Fullerene Acceptors. Small 2017, 13, 1701120.
[73] Wang, Y.; Chang, M.; Kan, B.; Wan, X.; Li, C.; Chen, Y. All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8%. ACS Applied Energy Materials 2018, 1, 2150-2156.
[74] Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; Wang, C.; Zhan, X. Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Adv. Mater. 2017, 29, 1700144.
[75] Sun, J.; Ma, X.; Zhang, Z.; Yu, J.; Zhou, J.; Yin, X.; Yang, L.; Geng, R.; Zhu, R.; Zhang, F.; Tang, W. Dithieno[3,2-b:2',3'-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. Adv. Mater. 2018, 30, 1707150.
[76] Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. J. Am. Chem. Soc. 2016, 138, 4657-4664.
[77] Firdaus, Y.; Maffei, L. P.; Cruciani, F.; Müller, M. A.; Liu, S.; Lopatin, S.; Wehbe, N.; Ndjawa, G. O. N.; Amassian, A.; Laquai, F.; Beaujuge, P. M. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells, Advanced Energy Materials 2017, 7, 1700834.
[78] Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency. Adv. Mater. 2017, 29, 1601241.
[79] Rutledge, L. R.; McAfee, S. M.; Welch, G. C. Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells. The Journal of Physical Chemistry A 2014, 118, 7939-7951.
[80] Wang, D.; Ding, W.; Geng, Z.; Wang, L.; Geng, Y.; Su, Z.; Yu, H. Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach. Materials Chemistry and Physics 2014, 145, 387-396.
[81] Wang, D.; Zhang, X.; Ding, W.; Zhao, X.; Geng, Z. Density functional theory design and characterization of D–A–A type electron donors with narrow band gap for small-molecule organic solar cells. Computational and Theoretical Chemistry 2014, 10, 68-78.
[82] Duan, Y. A.; Geng, Y.; Li, H. B.; Jin, J. L.; Wu, Y.; Su, Z. M. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. Journal of Computational Chemistry 2013, 34, 1611-9.
[83] Rutledge, L. R.; McAfee, S. M.; Welch, G. C. Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells. J. Phys. Chem. A 2014, 118, 7939-7951.
[84] Yu, T. Y. 國立台灣大學高分子科學與工程學研究所學位論文 2017, 1-36.
[85] Zhang, L.; Pei, K.; Yu, M.; Huang, Y.; Zhao, H.; Zeng, M.; Wang, Y.; Gao, J. Theoretical Investigations on Donor–Acceptor Conjugated Copolymers Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for Organic Solar Cell Applications. The Journal of Physical Chemistry C 2012, 116, 26154-26161.
[86] Oliveira, E. F.; Silva, L. C.; Lavarda, F. C. Modifying electronic properties of ICBA through chemical substitutions for solar cell applications. Structural Chemistry 2017, 28, 1133-1140.
[87] Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
[88] Putz, M. V. Carbon Bonding and Structures : Advances in Physics and Chemistry (Springer Science, New York, 2011).
[89] Xie, X. H.; Shen, W.; He, R. X.; Li, M. A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells. Bulletin of the Korean Chemical Society 2013, 34, 2995-3004.
[90] Zhang, G.; Musgrave, C. B. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. The Journal of Physical Chemistry A 2007, 111, 1554-1561.
[91] Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
[92] Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters 2004, 393, 51-57.
[93] Levine, I. N. Quantum Chemistry (Pearson Education Taiwan, Taiwan, 2006).
[94] Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
[95] Becke, A. D. Phys. Rev. A1988, 38, 3098.
[96] Pople, J. A.; Segal, G. A. J. Chem. Phys 1966, 44, 3289.
[97] Qin, Y.; Ye, L.; Zhang, S.; Zhu, J.; Yang, B.; Ade, H.; Hou, J. A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A 2018, 6, 4324-4330.
[98] Zhang, Y.; Kan, B.; Sun, Y.; Wang, Y.; Xia, R.; Ke, X.; Yi, Y. Q.; Li, C.; Yip, H. L.; Wan, X.; Cao, Y.; Chen, Y. Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Adv. Mater. 2018, 30, 1707508.
[99] Lu, L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 2014, 26, 4413-4430.
[100] Li, Y. L. 國立臺灣大學工學院高分子科學與工程學研究所碩士論文2017, 1-43.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71825-
dc.description.abstract本研究選擇新穎非富勒烯小分子IDT受體材料IDTT-DCI、IDTT-ID、IDTT-NTz與IDTT-BT為研究對象,並採用量子力學方法來探討在末端基上引入不同的取代基對光電性質之影響。選用的取代基有硝基(-NO2)、氰基(-CN)、羧酸基(-COOH)、氟基(-F)、乙炔基(-ethyne)、乙烯基(-ethene)、甲基(-CH3)、醇基(-OH)與一級胺基(-NH2)。首先對未引入取代基之受體材料進行幾何最佳化並針對其構型進行一系列分析,包括其主鏈平面性、主鏈與末端基之扭轉角與側鏈結構的分析。接著引入末端取代基與未改質之受體材料進行構型參數的比較,結果發現引入末端取代基因體積小且位置遠離易扭轉之結構使結構變化不大,與眾多文獻之論點相同。進一步我們利用Zindo方法模擬材料之UV-vis吸收光譜以及吸光性質,發現IDTT-DCI與IDTT-ID兩材料因LUMO能階之電子軌域分佈集中於主鏈上,在末端基上沒有大量之電子分佈,使取代基引入對其光吸收強度的變化不大,有趣的是所有末端基的引入對其吸收強度皆有微幅增加的現象;而IDTT-NTz與IDTT-BT兩材料因LUMO能階之電子軌域分佈集中於末端基之苯環上,使取代基之引入對其吸光強度的變化非常大,發現到拉電子能力越強之取代基引入將使吸收強度越增加,原因為LUMO電子軌域將越往取代基上分佈,進而使吸收強度有大幅度地增加。而在四種材料中取代基的引入,隨著拉電子能力的減弱,對能階皆有逐漸提升的現象;而取代基若具有π電子,對能隙有縮小的幫助,進而使吸收位置有紅位移的現象。此外,將傳統富勒烯與新穎IDT衍生物一同比較後,發現到傳統富勒烯其碳球具有高度對稱性,使躍遷偶極距低落,導致在長波長的躍遷沒有吸收的現象,且在短波長之吸收也不大;新穎非富勒烯材料則因共軛平面結構不僅讓π電子共軛性好,在取代基的引入也使長波長之躍遷偶極距增加。最後取代基的引入將使能階有所變化,所以我們將IDT系列衍生物與電子予體材料進行能階的匹配給予最適合之受體材料組合,其中IDTT-DCI-ethene與PBDB-T匹配不論是Voc值、吸收位置與光捕獲效率皆有優化的現象。此外P3HT與IDTT-BT-OH匹配後理論Voc可達1.41eV;PTB7-Th與IDTT-ID-COOH可達1.39eV;PffBT4T-2OD與IDTT-ID-NO2可達1.33eV;PBDB-T與IDTT-ID-ethene可達1.39eV。zh_TW
dc.description.abstractIn this study, novel non-fullerene small molecule IDT receptor materials IDTT-DCI, IDTT-ID, IDTT-NTz and IDTT-BT were selected as the research objects, and quantum mechanical simulation method was used to investigate the effect on photoelectric properties by introducing different substitutions on the terminal groups. The selected substituents are nitro (-NO2), cyano (-CN), carboxylic acid (-COOH), fluoro (-F), ethynyl (-ethyne), vinyl (-ethene), methyl. (-CH3), an alcohol group (-OH) and a primary amine group (-NH2). The unmodified acceptor material was first geometrically optimized and undergoing a series of analyses for its conformation, including its main chain planarity, the torsion angle between the main chain and the terminal group, and the side chain structure. Subsequent introduction of the terminal-substituent and the unmodified acceptor material was carried out to compare the conformation parameters. As a result, it was found that introducing the terminal-substituted with a small volume and its modified position away from the structure,which is easy to twist makes the structure hardly change, which matches the results of many literatures. Furthermore, we used the Zindo method to simulate the UV-vis absorption spectrum and the light absorption properties of the materials. It was found that the isodensity representations of the LUMO of the IDTT-DCI and IDTT-ID materials is concentrated on the main chain. The distribution of electrons makes the change of the light absorption intensity little, and it is interesting that the introduction of all terminal groups has a slight increase in the absorption intensity; while the electrons distribution of the LUMO of IDTT-NTz and IDTT-BT materials is concentrated on the benzene ring of the terminal group, makes the introduction of the substituent extremely changes the absorption intensity of the substituent. It is found that the stronger the electron-withdrawing ability, the more the absorption is introduced. Because the LUMO electronic orbital distributing over the substituents increases the absorption intensity. In the introduction of the substituents in the four materials, as the ability to withdraw electrons weakens, the energy level is gradually increased. If the substituent has π bond, the band gap is shrinking, and the absorption position has a red-shift phenomenon. In addition, the traditional fullerenes were also compared with the novel IDT derivatives, and it was found that the carbon sphere structure of the fullerenes has a high degree of symmetry, which makes the transition dipole moment very low, resulting in no absorption at long wavelength transitions and absorption at short wavelengths; novel non-fullerene materials not only make the π-electron conjugate better due to its conjugated planar structure, but also increase the long-wavelength transition dipole moment by the introduction of the substituent. The introduction of the terminal substituent will change the energy level, so we will match the IDT series of derivatives with the electron donor material to give the most suitable acceptor material combination. We found that in the combination of IDTT-DCI-ethene and PBDB-T, not only the Voc and the light capture efficiency are optimized, but also has a significantly increase in red-shift. In addition, the theoretical Voc of P3HT and IDTT-BT-OH can reach 1.41eV; PTB7-Th and IDTT-ID-COOH can reach 1.39eV; PffBT4T-2OD and IDTT-ID-NO2 can reach. 1.33eV; PBDB-T and IDTT-ID-ethene can reach 1.39eV.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:11:09Z (GMT). No. of bitstreams: 1
ntu-107-R05549024-1.pdf: 4373680 bytes, checksum: d65ec0085ce310a63f8feda3fd156657 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 ix
第1章 前言 1
第2章 模擬方法 11
2.1 量子力學模擬 11
2.2密度泛函理論 (Density Functional Theory, DFT)[87] 13
2.3 ZINDO半經驗近似法 (Semiempirical Approximations)[88] 16
第3章 結果與討論 22
3.1 IDT系列衍生物末端取代基改質之光電性質 22
3.1.1 IDTT-DCI末端取代基改質之光電性質 23
3.1.2 IDTT-ID末端取代基改質之光電性質 30
3.1.3 IDTT-NTz末端取代基改質之光電性質 34
3.1.4 IDTT-BT末端取代基改質之光電性質 38
3.2 改質後IDT衍生物與合適的予體材料配對 43
3.2.1 IDT衍生物與電子予體材料之能階匹配 43
3.2.2 IDT系列衍生物吸光能力比較 46
3.2.3 IDT系列衍生物與其他予體材料之匹配 50
第4章 結論 52
第5章 附錄 54
參考文獻 66
dc.language.isozh-TW
dc.subject非富勒烯小分子受體zh_TW
dc.subject取代基改質zh_TW
dc.subject量子力學zh_TW
dc.subject光電性質zh_TW
dc.subject紫外-可見光吸收光譜zh_TW
dc.subjectUV-vis spectrumen
dc.subjectsubstituent modificationen
dc.subjectnon-fullerene small molecule acceptoren
dc.subjectquantum mechanicsen
dc.subjectphotoelectric propertiesen
dc.title運用理論計算探討富勒烯與新穎非富勒烯小分子受體材料之分子改質與光電性質的關聯性zh_TW
dc.titleExploration of The Relationship between Molecular Modification and Photoelectric Properties of The Fullerene and Non-Fullerene Small Molecule Acceptor by Using Theoretical Calculationsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志平,王立義,楊小青
dc.subject.keyword非富勒烯小分子受體,取代基改質,量子力學,光電性質,紫外-可見光吸收光譜,zh_TW
dc.subject.keywordnon-fullerene small molecule acceptor,substituent modification,quantum mechanics,photoelectric properties,UV-vis spectrum,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201804256
dc.rights.note有償授權
dc.date.accepted2018-11-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved