Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴亮全(Liang-Chuan Lai)
dc.contributor.authorJun-Liang Luoen
dc.contributor.author羅俊良zh_TW
dc.date.accessioned2021-06-17T06:10:54Z-
dc.date.available2019-03-05
dc.date.copyright2019-03-05
dc.date.issued2018
dc.date.submitted2018-11-09
dc.identifier.citation1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61: p. 69-90.
2. Lech, R. and O. Przemyslaw, Epidemiological models for breast cancer risk estimation. Ginekol Pol, 2011. 82: p. 451-4.
3. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406: p. 747-52.
4. Hu, M. and K. Polyak, Microenvironmental regulation of cancer development. Curr Opin Genet Dev, 2008. 18: p. 27-34.
5. Gulledge, C.J. and M.W. Dewhirst, Tumor oxygenation: a matter of supply and demand. Anticancer Res, 1996. 16: p. 741-9.
6. Lundgren, K., C. Holm, and G. Landberg, Hypoxia and breast cancer: prognostic and therapeutic implications. Cell Mol Life Sci, 2007. 64: p. 3233-47.
7. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2: p. 38-47.
8. Bristow, R.G. and R.P. Hill, Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer, 2008. 8: p. 180-92.
9. Brown, J.M. and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res, 1998. 58: p. 1408-16.
10. Semenza, G.L., Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci, 2012. 33: p. 207-14.
11. Dengler, V.L., M. Galbraith, and J.M. Espinosa, Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol, 2014. 49: p. 1-15.
12. Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001. 292: p. 468-72.
13. Curran, C.S. and P.J. Keely, Breast tumor and stromal cell responses to TGF-beta and hypoxia in matrix deposition. Matrix Biol, 2013. 32: p. 95-105.
14. Knowles, H.J. and A.L. Harris, Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res, 2001. 3: p. 318-22.
15. Hong, S.S., H. Lee, and K.W. Kim, HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res Treat, 2004. 36: p. 343-53.
16. Hu, C.J., et al., Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol, 2003. 23: p. 9361-74.
17. Djebali, S., et al., Landscape of transcription in human cells. Nature, 2012. 489: p. 101-8.
18. Zhang, H., et al., Long non-coding RNA: a new player in cancer. J Hematol Oncol, 2013. 6: p. 37.
19. Guttman, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009. 458: p. 223-7.
20. Trimarchi, T., et al., Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell, 2014. 158: p. 593-606.
21. Zhou, C., et al., Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1alpha activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol, 2015. 36: p. 9179-88.
22. Wang, F., et al., Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget, 2015. 6: p. 7899-917.
23. Yang, G., X. Lu, and L. Yuan, LncRNA: a link between RNA and cancer. Biochim Biophys Acta, 2014. 1839: p. 1097-109.
24. Marchese, F.P., et al., A long noncoding RNA regulates sister chromatid cohesion. Mol Cell, 2016. 63: p. 397-407.
25. Huarte, M., et al., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010. 142: p. 409-19.
26. Byun, H.M., et al., Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res, 2007. 67: p. 10753-8.
27. Tian, F., et al., Loss of imprinting of IGF2 correlates with hypomethylation of the H19 differentially methylated region in the tumor tissue of colorectal cancer patients. Mol Med Rep, 2012. 5: p. 1536-40.
28. Lottin, S., et al., Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 2002. 23: p. 1885-95.
29. Wu, W., et al., Hypoxia induces H19 expression through direct and indirect Hif-1alpha activity, promoting oncogenic effects in glioblastoma. Sci Rep, 2017. 7: p. 45029.
30. Lin, H.C., et al., The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget, 2018. 9: p. 10470-10482.
31. Fang, B.A., et al., Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta, 2014. 1845: p. 1-19.
32. Kurdistani, S.K., et al., Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res, 1998. 58: p. 4439-44.
33. Angst, E., et al., N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Surgery, 2011. 149: p. 614-24.
34. Lu, W.J., M.S. Chua, and S.K. So, Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor growth in hepatocellular carcinoma. Carcinogenesis, 2014. 35: p. 915-22.
35. Li, E.Y., et al., Aryl hydrocarbon receptor activates NDRG1 transcription under hypoxia in breast cancer cells. Sci Rep, 2016. 6: p. 20808.
36. Lai, L.C., et al., Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation. PLoS One, 2011. 6: p. e24375.
37. Luo, E.C., et al., MicroRNA-769-3p down-regulates NDRG1 and enhances apoptosis in MCF-7 cells during reoxygenation. Sci Rep, 2014. 4: p. 5908.
38. Orom, U.A., et al., Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010. 143: p. 46-58.
39. Nagano, T., et al., The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008. 322: p. 1717-20.
40. Yeh, C.C., et al., Different effects of long noncoding RNA NDRG1-OT1 fragments on NDRG1 transcription in breast cancer cells under hypoxia. 2018.
41. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012. 9: p. 671-5.
42. Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94: p. 4273-8.
43. Flamme, I., et al., HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev, 1997. 63: p. 51-60.
44. Wu, D. and P. Yotnda, Induction and testing of hypoxia in cell culture. JoVE-J Vis Exp, 2011. 54: p. e2899.
45. Arany, Z., et al., An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A, 1996. 93: p. 12969-73.
46. Wong, N. and X. Wang, miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res, 2015. 43: p. D146-52.
47. Kruger, J. and M. Rehmsmeier, RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res, 2006. 34: p. W451-4.
48. Liu, J., et al., Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004. 305: p. 1437-41.
49. Zhou, W., et al., The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal, 2017. 10: p. eaak9557.
50. Choudhry, H., et al., Tumor hypoxia induces nuclear paraspeckle formation through HIF-2alpha dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 2015. 34: p. 4482-90.
51. Yang, F., et al., Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell, 2014. 53: p. 88-100.
52. Takahashi, K., et al., Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci, 2014. 127: p. 1585-94.
53. Koong, A.C., E.Y. Chen, and A.J. Giaccia, Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res, 1994. 54: p. 1425-30.
54. Leeper-Woodford, S.K. and K. Detmer, Acute hypoxia increases alveolar macrophage tumor necrosis factor activity and alters NF-kappaB expression. Am J Physiol, 1999. 276: p. L909-16.
55. Beitner-Johnson, D. and D.E. Millhorn, Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. J Biol Chem, 1998. 273: p. 19834-9.
56. Millhorn, D.E., et al., Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. Kidney Int, 1997. 51: p. 527-35.
57. Alarcon, R., et al., Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res, 1999. 59: p. 6046-51.
58. Shih, J.W. and H.J. Kung, Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci, 2017. 24: p. 53.
59. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of O2 availability on human cancer. Nat Rev Cancer, 2008. 8: p. 967-75.
60. Yoon, J.H., et al., Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun, 2013. 4: p. 2939.
61. Poliseno, L., et al., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010. 465: p. 1033-8.
62. Cesana, M., et al., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011. 147: p. 358-69.
63. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3: p. 721-32.
64. Zhang, Z.C., et al., Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci, 2017. 13: p. 1398-1408.
65. Ogino, T., et al., Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions. Cancer Immunol Immunother, 2012. 61: p. 409-24.
66. Yoon, G., C.S. Oh, and H.S. Kim, Distinctive expression patterns of hypoxia-inducible factor-1alpha and endothelial nitric oxide synthase following hypergravity exposure. Oncotarget, 2016. 7: p. 33675-88.
67. Chowdhury, A.R., et al., Mitochondrial stress-induced p53 attenuates HIF-1alpha activity by physical association and enhanced ubiquitination. Oncogene, 2017. 36: p. 397-409.
68. Verratti, V., et al., Sperm forward motility is negatively affected by short-term exposure to altitude hypoxia. Andrologia, 2016. 48: p. 800-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71818-
dc.description.abstract缺氧是在一個在腫瘤微環境中典型的特徵,其對於癌症進程有深切的影響,而且與較差的預後密切相關。長片段非編碼核糖核酸(long non-coding RNA, lncRNA)是非編碼基因體的一員,由於其在腫瘤生成中扮演許多不同的角色而逐漸受到重視。先前我們實驗室使用次世代定序找到了在乳癌細胞株MCF-7中會被缺氧誘導表現的lncRNA,NDRG1-OT1,但是對於NDRG1-OT1的調控機制以及功能仍尚未釐清。因此本研究目的即為探討NDRG1-OT1在乳癌細胞中的轉錄機制以及可能扮演的功能角色。NDRG1-OT1的表現量分析顯示其在不同乳癌細胞株處於缺氧時皆會上升。而在過表現或者敲低缺氧誘導因子1α (HIF-1α)時分別會上調以及下調NDRG1-OT1的表現量。冷光酶報導基因分析法以及染色質免疫沉澱分析法證實了HIF-1α會結合到NDRG1-OT1的啟動子(-1,773到-1,769鹼基對及-647到-643鹼基對)上來活化其轉錄作用。接下來,為了探討NDRG1-OT1是否能作為吸附微小RNA (miRNA)的海綿,生物資訊工具首先被用來預測可能有交互作用的miRNA,而預測到的miRNA的表現量分析以及RNA免疫沉澱分析法的結果說明了NDRG1-OT1並不能作為miRNA海綿。最後關於NDRG1-OT1的功能角色方面,在常氧及擬缺氧狀況下過表現NDRG1-OT1並不會影響細胞增生、細胞遷移以及細胞週期的分布。總而言之,在這些結果中我們發現一個新的轉錄機制,即當乳癌細胞在缺氧刺激下,HIF-1α會透過轉錄活化而促進NDRG1-OT1的表現量上升。zh_TW
dc.description.abstractHypoxia is a classic feature of tumor microenvironment, which has profound effects on cancer progression and is tightly associated with poor prognosis. Long non-coding RNAs (lncRNAs), a member of non-coding genome, have been increasingly investigated due to their diverse roles in tumorigenesis. Previously, our lab identified a hypoxia-induced lncRNA, NDRG1-OT1, in MCF-7 breast cancer cells using next-generation sequencing. However, the regulatory mechanism and functional roles of NDRG1-OT1 remain elusive. Therefore, the purpose of this study is to investigate the transcriptional mechanism and potential function roles of NDRG1-OT1 in breast cancer cells. Expression profiling of NDRG1-OT1 revealed that it was upregulated under hypoxia in different breast cancer cells. Over-expression and knockdown of HIF-1α up- and down-regulated NDRG1-OT1 respectively. Luciferase reporter assays and chromatin immunoprecipitation assays validated that HIF-1α transcriptionally activated NDRG1-OT1 by binding to its promoter (-1,773 to -1,769 and -647 to -643 bp). Next, to investigate whether NDRG1-OT1 could function as miRNA sponge, in silico analysis, expression profiling of predicted miRNAs, and RNA immunoprecipitation assays were performed, and the results implied that NDRG1-OT1 could not act as miRNA sponge. Lastly, regarding the function of NDRG1-OT1, ectopic expression of NDRG1-OT1 could not affect cell proliferation, migration, and cell cycle distribution under normoxia and hypoxia mimic conditions. In summary, our findings revealed a novel transcriptional mechanism of NDRG1-OT1 regulated by HIF-1α upon hypoxic condition in breast cancer cells.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:10:54Z (GMT). No. of bitstreams: 1
ntu-107-R05441017-1.pdf: 3142602 bytes, checksum: 54ef18c32fcec726857531f6d2bcc92e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Chapter 1 Introduction 1
1.1 Breast cancer and hypoxia 1
1.2 Emerging roles of long non-coding RNAs in cancer 2
1.3 Relationship between lncRNA NDRG1-OT1 and hypoxia 3
1.4 The aim of study 4
Chapter 2 Materials and Methods 6
2.1 Cell culture and treatments 6
2.2 Plasmid construction 7
2.3 Transfection and RNA interference 8
2.4 Site-directed mutagenesis 8
2.5 Luciferase reporter assay 9
2.6 RNA extraction, reverse transcription and quantitative RT-PCR 10
2.7 Nuclear-cytoplasmic RNA fractionation 11
2.8 Western blot 11
2.9 RNA immunoprecipitation (RIP) 12
2.10 Chromatin immunoprecipitation (ChIP) 13
2.11 Cell counting kit-8 (CCK-8) assay 14
2.12 Wound healing assay 14
2.13 Transwell migration assay 15
2.14 Colony formation assay 15
2.15 Cell cycle analysis 16
2.16 Statistical analysis 16
Chapter 3 Results 17
3.1 NDRG1-OT1 was upregulated under hypoxia in different breast cancer cell lines 17
3.2 Hypoxia inducible factors (HIFs) increased NDRG1-OT1 expression 17
3.3 Only HIF-1α regulated NDRG1-OT1 expression under hypoxia 19
3.4 HIF-1α transcriptionally activated NDRG1-OT1 under hypoxia by binding to its promoter 19
3.5 NDRG1-OT1 could not serve as miRNA sponge 21
3.6 NDRG1-OT1 could not affect cell functions of MCF-7 cells 22
Chapter 4 Discussion 24
4.1 The regulation of NDRG1-OT1 under hypoxia 24
4.2 Relationship between NDRG1-OT1 and miRNA sponge 26
4.3 Functional role of NDRG1-OT1 in breast cancer cells 28
4.4 Summary 29
Tables 30
Figures 36
References 55
Supplementary Data 64
dc.language.isoen
dc.subjectNDRG1-OT1zh_TW
dc.subject長片段非編碼核糖核酸zh_TW
dc.subject微小RNAzh_TW
dc.subject缺氧zh_TW
dc.subject常氧zh_TW
dc.subjectHIF-1azh_TW
dc.subject乳癌zh_TW
dc.subjectnormoxiaen
dc.subjectlncRNAen
dc.subjectNDRG1-OT1en
dc.subjectbreast canceren
dc.subjectHIF-1aen
dc.subjectmiRNAen
dc.subjectHypoxiaen
dc.title探討長片段非編碼核糖核酸NDRG1-OT1在乳癌細胞中的調控機制與扮演的功能角色zh_TW
dc.titleInvestigation of Regulatory Mechanisms and Functional Roles of Long Non-Coding RNA NDRG1-OT1 in Breast Cancer Cellsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee佘玉萍(Yuh-Pyng Sher),胡孟君(Meng-Chun Hu),蔡孟勳(Mon-Hsun Tsai)
dc.subject.keyword缺氧,長片段非編碼核糖核酸,NDRG1-OT1,乳癌,HIF-1a,微小RNA,常氧,zh_TW
dc.subject.keywordHypoxia,lncRNA,NDRG1-OT1,breast cancer,HIF-1a,miRNA,normoxia,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201804266
dc.rights.note有償授權
dc.date.accepted2018-11-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved