請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕志達 | |
| dc.contributor.author | Tien-Yu Wang | en |
| dc.contributor.author | 王天佑 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:10:37Z | - |
| dc.date.available | 2028-11-16 | |
| dc.date.copyright | 2018-11-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-11-16 | |
| dc.identifier.citation | [1]Ericsson Mobility Report [Online]. Available:
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf [2]R. Zhang et al., 'LTE-Unlicensed: the Future of Spectrum Aggregation for Cellular Networks', IEEE Wireless Commun., vol. 22, no. 3, pp. 150-59, June 2015. [3]3GPP TS 36.211, “Physical Channels and Modulations.” [4]S. Sesia, I. Toufik and M. Baker, LTE: The UMTS Long Term Evolution, From Theory to Practice, Wiley Feb. 2009. [5]W. C. Hu, “Design and Implementation of Interference-Aware Receiver in Ultra Dense Network,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, December. 2017. [6]R. Stacey and E. Perahia, Next Generation Wireless LANs, Second Edition. Cambridge University Press, Apr. 2013. [7]Z. Y. Ding, “Baseband Receiver Design for Next-Generation High-Throughput Wireless LAN with MIMO-OFDM Technology,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, Jun. 2005. [8]TGn Sync Proposal Technical Specification: IEEE 802.11-04-0889. [9]TGn Channel Model: IEEE 802.11-03-0940-04-000n. [10]Qualcomm, Inc [Online]. Available: https://www.qualcomm.cn/invention/research/projects/lte-unlicensed [11]LTE-U與LAA發展趨勢介紹 [Online] . Available: https://www.ttc.org.tw/userfiles/file/20151104/20151104090423_39805.pdf [12]E.Perahia and R.Stacey, Next Generation Wireless LANs, Cambridge University Press, 2008 [13]Qualcomm Technologies, Inc.,”LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi,” White paper, June 2014. [14]Study on Licensed-Assisted Access to Unlicensed Spectrum (Release 13), document 3GPP TR 36.889 V13.0.0, Jun. 2015. [15]B. Jia and M. Tao, “A channel sensing based design for LTE in unlicensed bands,” in Proc. IEEE Int. Conf. Commun. (ICC) Workshop LTE Unlicensed Bands (LTE-U), London, U.K., 2015, pp. 2332–2337 [16]J. Jeon et al., “LTE with listen-before-talk in unlicensed spectrum,” in Proc. IEEE Int. Conf. Commun. (ICC) Workshop LTE Unlicensed Bands (LTE-U), London, U.K., 2015, pp. 2320–2324 [17]K. Yoon et al., 'COTA: Channel occupancy time adaptation for LTE in unlicensed spectrum,' 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Piscataway, NJ, 2017, pp. 1-10. [18]S. Saadat, et al., 'License assisted access-WiFi coexistence with TXOP backoff for LTE in unlicensed band,' in China Communications, vol. 14, no. 3, pp. 1-14, March 2017. [19]Q. Chen, et al., 'Embedding LTE-U within Wi-Fi Bands for Spectrum Efficiency Improvement,' in IEEE Network, vol. 31, no. 2, pp. 72-79, March/April 2017. [20]H. Sun et al., “Enabling LTE and WiFi Coexisting in 5 GHz for Efficient Spectrum Utilization,” Journal of Computer Networks and Communications, vol. 2017, Article ID 5156164, 17 pages, 2017. doi:10.1155/2017/5156164 [21]S. Yun and L. Qiu, 'Supporting WiFi and LTE co-existence,' 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, 2015, pp. 810-818. [22]H. P. Hsu, “Design and Implementation of Speculative LTE-Unlicensed Transceiver,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, January 2017. [23]T. Nihtilä et al., 'System performance of LTE and IEEE 802.11 coexisting on a shared frequency band,' 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013, pp. 1038-1043. [24]E. Almeida et al., “Enabling LTE/Wi-Fi Coexistence by LTE Blank Subframe Allocation,” IEEE Int’l. Conf. Commun.(ICC), June 2013, pp. 5083–88. [25]K. B. Schaub and J. Kelly. “Production Testing of RF and System-on-a-Chip Devices for Wireless Communications”, Artech House, Inc., Boston, 2004, pp69-72. [26]OpenCL Platform Model [Online] . Available: https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf [27]T. T. Dao and J. Lee. 'An Auto-Tuner for OpenCL Work-Group Size on GPUs,' IEEE Transactions on Parallel & Distributed Systems 2 (2018): 283-296. [28]Y. F. Cheng, “Design and Implementation of Baseband Transceiver with Adaptive MIMO-OFDM Technology,” Master thesis, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, Nov. 2014. [29]AMD “OpenCL Optimization Guide,” 2013. [30]ShareTechnote [Online]. Available: http://www.sharetechnote.com/html/Communication_ChannelEstimation.html [31]C. C. Liao. 'Design of a Baseband Transceiver for 3GPP LTE subscriber Station,' M.S. thesis, National Taiwan University, Taipei, Taiwan, July 2011. [32]M. C. Valenti1 and J. Sun, 'The UMTS Turbo Code and an Efficient Decoder Implementation Suitable for Software-Defined Radios,' International Journal of Wireless Information Networks, Vol. 8, No. 4, pp.203-215, October 2001. [33]R. Banger and K. Bhattacharyya, OpenCL Programming by Example, Packt Publishing, 2013 [34]T. D. Chiueh, P. Y. Tsai, and I. W. Lai, Baseband Receiver Design for Wireless MIMO-OFDM Communications, 2nd Ed. Wiley Inc., Apr. 2012. [35]C. H. Wang, “Design and Implementation of Non-orthogonal Multiple Access (NOMA) Baseband Receiver with OpenCL,” M.S. thesis, National Taiwan University, Taipei, Taiwan, Nov. 2016. [36]A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ‘‘Implementation of a fully-parallel turbo decoder on a general-purpose graphics processing unit,’’ IEEE Access, vol. 4, pp. 5624–5639, Jun. 2016 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71810 | - |
| dc.description.abstract | 為了應付行動傳輸量驟增的現象,電信商需要取得更多的頻段來傳輸資料。因此,除了現有的商用授權頻段外,結合未授權頻段已漸漸被大家視為未來發展主軸,但需要解決與其他系統共存的問題。前人提出一個與其他文獻完全不同的作法:時域干擾消除技術來解決未授權頻譜之長期演進技術遇到的異質網路共存問題,甚至在兩邊系統訊號碰撞的情況下也可以進行解調。本論文接續前人的研究並修改演算法與考慮不理想效應,目的將其做得更加完善。之後經由軟體來模擬功率控制以及空白子訊框對時域干擾消除技術的影響。
在展示中,我們利用CPU、GPU以及NI USRP開發出軟體定義無線電(Software Defined Radio)平台,並利用GPU優越的平行處理能力壓縮執行時間,使此平台能夠在取樣率為20MHz下進行即時實收實解。藉由此SDR平台,我們可以驗證時域干擾消除技術在收到真實訊號下的可行性,並觀察功率控制以及空白子訊框比例的調整是否有益於時域干擾消除技術的執行。 | zh_TW |
| dc.description.abstract | In order to cope with the explosive increase in the amount of mobile transmission, telecom operators need to acquire more frequency bands to transmit data。In addition to the existing commercial licensed frequency bands, the combination of unlicensed frequency bands has gradually been regarded as high-potential development in future wireless communications, but it is necessary to solve the problem of coexistence with other systems. Previous works proposed a completely different approach from other schemes, namely time-domain interference cancellation (TDIC) technology to solve the heterogeneous network coexistence problem encountered in LTE-U system. This thesis continues this line of research and modifies the algorithm while considering a coupe of imperfect effects to make the solution more robust. The developed transceiver is then used to simulate the effects of power control and blank sub-frames to demonstrate the effectiveness of the proposed time-domain interference cancellation technology.
In addition, we developed a Software Defined Radio platform using CPU, GPU and NI USRP, and used the superior parallel processing capability of the GPU to speed up the baseband signal processing of the LTE-U receiver, enabling the platform to perform the real-time demodulation at a sampling rate of 20MHz. With this SDR platform, we can verify the feasibility of the time-domain interference cancellation technology when receiving over-the-air signals. Furthermore, the SDR platform illustrates that the power control and blank subframe ratio adjustment schemes enable robust and almost error free LTE-U reception. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:10:37Z (GMT). No. of bitstreams: 1 ntu-107-R05943021-1.pdf: 7927497 bytes, checksum: d82857169279a4fab82b2e67964dd218 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 第一章 緒論 17 1.1 研究背景 17 1.2 研究動機 18 1.3 論文架構 19 第二章 未授權頻帶之長期演進技術及相關標準簡介 21 2.1 3GPP LTE標準簡介 21 2.1.1 訊框架構 21 2.1.2 下行參數 24 2.1.3 同步訊號 25 2.1.3.1 主要同步訊號(Primary Synchronization Signal,PSS) 27 2.1.3.2 次要同步訊號(Secondary Synchronization Signal,SSS) 27 2.1.4 參考訊號 31 2.2 WLAN 802.11n系統規格簡介 34 2.2.1 前導訊號功能 34 2.2.2 前導訊號各別介紹 37 2.2.3 通道模型介紹 41 2.3 未授權頻譜之長期演進技術(LTE-Unlicensed,LTE-U)簡介 42 2.3.1 未授權頻譜 (Unlicensed Spectrum) 43 2.3.2 先聽後送機制 (Listen Before Talk) 43 2.3.3 文獻探討 45 2.3.3.1 Listen Before Talk (LBT) 45 2.3.3.2 Carrier Sense Adaptive Transmission (CSAT) 46 2.3.4 已知文獻小結 46 第三章 時域干擾消除 (Time Domain Interference Cancellation) 49 3.1 時域干擾消除簡介 49 3.2 時域干擾消除技術 50 3.2.1 功率控制 (Power Control) 50 3.2.2 空白子訊框 (Blank Subframe) 52 3.2.3 通道不匹配議題 (Channel Mismatch Issue) 53 3.3 與舊有文獻之比較 55 第四章 演算法修改與模擬結果 57 4.1 WiFi 符元邊界粗估 (Coarse Symbol Boundary Detection) 57 4.2 功率放大器 (Power Amplifier) 64 4.3 卜松分佈 (Poisson Distribution) 67 4.4 模擬結果 69 第五章 LTE-U系統架構設計與OpenCL實作優化 79 5.1 OpenCL簡介 79 5.2 TDIC-based LTE-U系統接收機簡介 82 5.2.1 WiFi Demodulation 82 5.2.2 WiFi Waveform Reconstruction and Cancellation 83 5.2.3 LTE Demodulation 84 5.3 WiFi 符元邊界粗估 (Coarse Symbol Boundary Detection) 85 5.4 快速傅立葉轉換 (Fast Fourier Transform) 87 5.5 通道估測 (Channel Estimation) 89 5.6 線性回歸 (Linear Regression) 91 5.7 重新取樣 (Resample) 93 5.8 LTE PSS兩階段偵測整數載波頻率飄移與Sector ID [35] 94 5.8.1 整數載波頻率飄移偵測 95 5.8.2 root index偵測 96 5.9 LTE SSS偵測 [35] 97 5.10 LTE符元邊界細估 (Fine Symbol Boundary Detection) [35] 99 5.11 通道解碼 (Channel Decoding) [32][36] 100 5.12 執行時間分析 102 第六章 軟體定義無線電與系統整合 103 6.1 軟體定義無線電平台架構 103 6.1.1 平台架構配置 104 6.1.2 實作流程 106 6.2 應用程式介面 107 6.3 圖形化介面 108 6.4 展示成果 109 第七章 結論與未來展望 121 參考文獻 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 未授權頻譜之長期演進技術 | zh_TW |
| dc.subject | Over-The-Air(OTA) | zh_TW |
| dc.subject | 異質網路共存 | zh_TW |
| dc.subject | 時域干擾消除技術 | zh_TW |
| dc.subject | LTE Unlicensed (LTE-U) | en |
| dc.subject | Time-Domain Interference Cancellation (TDIC) | en |
| dc.subject | heterogeneous networks (HetNet) coexistence | en |
| dc.subject | Over-The-Air (OTA) | en |
| dc.title | 時域干擾消除技術於未授權頻譜長期演進技術之設計與實現 | zh_TW |
| dc.title | Design and Implementation of Time Domain Interference Cancellation Based Receiver in LTE-Unlicensed Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇炫榮,魏宏宇,蘇柏青 | |
| dc.subject.keyword | 未授權頻譜之長期演進技術,時域干擾消除技術,異質網路共存,Over-The-Air(OTA), | zh_TW |
| dc.subject.keyword | LTE Unlicensed (LTE-U),Time-Domain Interference Cancellation (TDIC),heterogeneous networks (HetNet) coexistence,Over-The-Air (OTA), | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201804279 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-11-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
