請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71800
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林郁真(Yu-Chen Lin) | |
dc.contributor.author | Kun-Pu Ho | en |
dc.contributor.author | 何昆圃 | zh_TW |
dc.date.accessioned | 2021-06-17T06:10:15Z | - |
dc.date.available | 2023-11-29 | |
dc.date.copyright | 2018-11-29 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-11-21 | |
dc.identifier.citation | Adachi, F., Yamamoto, A., Takakura, K.-I. and Kawahara, R. (2013) Occurrence of fluoroquinolones and fluoroquinolone-resistance genes in the aquatic environment. Science of The Total Environment 444, 508-514.
Babić, S., Periša, M. and Škorić, I. (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91(11), 1635-1642. Baena-Nogueras, R.M., González-Mazo, E. and Lara-Martín, P.A. (2017) Photolysis of Antibiotics under Simulated Sunlight Irradiation: Identification of Photoproducts by High-Resolution Mass Spectrometry. Environmental Science & Technology 51(6), 3148-3156. Baginska, E., Haiß, A. and Kümmerer, K. (2015) Biodegradation screening of chemicals in an artificial matrix simulating the water–sediment interface. Chemosphere 119, 1240-1246. Carmosini, N. and Lee, L.S. (2009) Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 77(6), 813-820. Carrasquillo, A.J., Bruland, G.L., MacKay, A.A. and Vasudevan, D. (2008) Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals: Influence of Compound Structure. Environmental Science & Technology 42(20), 7634-7642. Chau, T.T., Campbell, J.I., Galindo, C.M., Van Minh Hoang, N., Diep, T.S., Nga, T.T., Van Vinh Chau, N., Tuan, P.Q., Page, A.L., Ochiai, R.L., Schultsz, C., Wain, J., Bhutta, Z.A., Parry, C.M., Bhattacharya, S.K., Dutta, S., Agtini, M., Dong, B., Honghui, Y., Anh, D.D., Canh, D.G., Naheed, A., Albert, M.J., Phetsouvanh, R., Newton, P.N., Basnyat, B., Arjyal, A., La, T.T., Rang, N.N., Phuong, L.T., Van Be Bay, P., von Seidlein, L., Dougan, G., Clemens, J.D., Vinh, H., Hien, T.T., Chinh, N.T., Acosta, C.J., Farrar, J. and Dolecek, C. (2007) Antimicrobial drug resistance of Salmonella enterica serovar typhi in asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob Agents Chemother 51(12), 4315-4323. Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X. and Xie, Q. (2010) Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate Effects of Main Water Constituents. Environmental Science & Technology 44(7), 2400-2405. Gentry, L.O. and Rodriguez, G.G. (1990) Oral ciprofloxacin compared with parenteral antibiotics in the treatment of osteomyelitis. Antimicrobial Agents and Chemotherapy 34(1), 40-43. Girardi, C., Greve, J., Lamshöft, M., Fetzer, I., Miltner, A., Schäffer, A. and Kästner, M. (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. Journal of Hazardous Materials 198, 22-30. Gu, C. and Karthikeyan, K.G. (2005) Sorption of the Antimicrobial Ciprofloxacin To Aluminum and Iron Hydrous Oxides. Environmental Science & Technology 39(23), 9166-9173. Hsieh, W.-J., Lin, H.-C., Hwang, S.-J., Hou, M.-C., Lee, F.-Y., Chang, F.-Y. and Lee, S.-D. (1998) The effect of ciprofloxacin in the prevention of bacterial infection in patients with cirrhosis after upper gastrointestinal bleeding. American Journal Of Gastroenterology 93, 962. Huang, J., Zhong, S., Dai, Y., Liu, C.-C. and Zhang, H. (2018) Effect of MnO2 Phase Structure on the Oxidative Reactivity toward Bisphenol A Degradation. Environmental Science & Technology. Kümmerer, K., Al-Ahmad, A. and Mersch-Sundermann, V. (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40(7), 701-710. Karthikeyan, K.G. and Meyer, M.T. (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of The Total Environment 361(1), 196-207. Lam, M.W., Tantuco, K. and Mabury, S.A. (2003) PhotoFate: A New Approach in Accounting for the Contribution of Indirect Photolysis of Pesticides and Pharmaceuticals in Surface Waters. Environmental Science & Technology 37(5), 899-907. Li, A., Xu, M., Li, W., Wang, X. and Dai, J. (2008) Adsorption characterizations of fulvic acid fractions onto kaolinite. Journal of Environmental Sciences 20(5), 528-535. Li, X.-W., Xie, Y.-F., Li, C.-L., Zhao, H.-N., Zhao, H., Wang, N. and Wang, J.-F. (2014) Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China. Science of The Total Environment 468-469, 258-264. Li, Z. and Gallus, L. (2005) Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 264(1), 61-67. Li, Z., Hong, H., Liao, L., Ackley, C.J., Schulz, L.A., MacDonald, R.A., Mihelich, A.L. and Emard, S.M. (2011) A mechanistic study of ciprofloxacin removal by kaolinite. Colloids and Surfaces B: Biointerfaces 88(1), 339-344. Lin, A.Y., Yu, T.H. and Lin, C.F. (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74(1), 131-141. Lin, Y.C., Hsiao, K.W. and Lin, A.Y. (2018) Photolytic degradation of ciprofloxacin in solid and aqueous environments: kinetics, phototransformation pathways, and byproducts. Environ Sci Pollut Res Int 25(3), 2303-2312. Martins, A.F., Vasconcelos, T.G., Henriques, D.M., Frank, C.d.S., König, A. and Kümmerer, K. (2008) Concentration of Ciprofloxacin in Brazilian Hospital Effluent and Preliminary Risk Assessment: A Case Study. CLEAN – Soil, Air, Water 36(3), 264-269. McCarty, J.M., Richard, G., Huck, W., Tucker, R.M., Tosiello, R.L., Shan, M., Heyd, A. and Echols, R.M. (1999) A randomized trial of short-course ciprofloxacin, ofloxacin, or trimethoprim/sulfamethoxazole for the treatment of acute urinary tract infection in women. The American Journal of Medicine 106(3), 292-299. Neuhauser, M.M., Weinstein, R.A., Rydman, R., Danziger, L.H., Karam, G. and Quinn, J.P. (2003) Antibiotic resistance among gram-negative bacilli in us intensive care units: Implications for fluoroquinolone use. JAMA 289(7), 885-888. Pei, Z., Shan, X.-Q., Kong, J., Wen, B. and Owens, G. (2010) Coadsorption of Ciprofloxacin and Cu(II) on Montmorillonite and Kaolinite as Affected by Solution pH. Environmental Science & Technology 44(3), 915-920. Peloquin, C.A., Cumbo, T.J., Nix, D.E., Sands, M.F. and Schentag, J.J. (1989) Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections: Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Archives of Internal Medicine 149(10), 2269-2273. Peltzer, P.M., Lajmanovich, R.C., Attademo, A.M., Junges, C.M., Teglia, C.M., Martinuzzi, C., Curi, L., Culzoni, M.J. and Goicoechea, H.C. (2017) Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae. Environ Toxicol Pharmacol 51, 114-123. Riaz, L., Mahmood, T., Khalid, A., Rashid, A., Ahmed Siddique, M.B., Kamal, A. and Coyne, M.S. (2018) Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere 191, 704-720. Rivagli, E., Pastorello, A., Sturini, M., Maraschi, F., Speltini, A., Zampori, L., Setti, M., Malavasi, L. and Profumo, A. (2014) Clay minerals for adsorption of veterinary FQs: Behavior and modeling. Journal of Environmental Chemical Engineering 2(1), 738-744. Roca Jalil, M.E., Baschini, M. and Sapag, K. (2015) Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Applied Clay Science 114, 69-76. Salma, A., Thoröe-Boveleth, S., Schmidt, T.C. and Tuerk, J. (2016) Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin. Journal of Hazardous Materials 313, 49-59. Sturini, M., Speltini, A., Maraschi, F., Pretali, L., Profumo, A., Fasani, E. and Albini, A. (2014) Environmental photochemistry of fluoroquinolones in soil and in aqueous soil suspensions under solar light. Environ Sci Pollut Res Int 21(23), 13215-13221. Sturini, M., Speltini, A., Maraschi, F., Pretali, L., Profumo, A., Fasani, E., Albini, A., Migliavacca, R. and Nucleo, E. (2012a) Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Research 46(17), 5575-5582. Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Fasani, E. and Albini, A. (2012b) Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin. Chemosphere 86(2), 130-137. Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Irastorza, E.A., Fasani, E. and Albini, A. (2012c) Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Applied Catalysis B: Environmental 119-120, 32-39. Sturini, M., Speltini, A., Maraschi, F., Rivagli, E., Pretali, L., Malavasi, L., Profumo, A., Fasani, E. and Albini, A. (2015) Sunlight photodegradation of marbofloxacin and enrofloxacin adsorbed on clay minerals. Journal of Photochemistry and Photobiology A: Chemistry 299, 103-109. Sutheimer Susan, H., Maurice Patricia, A. and Zhou, Q. (1999) Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics, p. 620. Taujale, S. and Zhang, H. (2012) Impact of Interactions between Metal Oxides to Oxidative Reactivity of Manganese Dioxide. Environmental Science & Technology 46(5), 2764-2771. Threlfall, E.J. (2006) Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiology Reviews 26(2), 141-148. Torniainen, K., Tammilehto, S. and Ulvi, V. (1996) The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. International Journal of Pharmaceutics 132(1), 53-61. Vazquez-Roig, P., Segarra, R., Blasco, C., Andreu, V. and Picó, Y. (2010) Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1217(16), 2471-2483. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. and Barceló, D. (2012) Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of The Total Environment 430, 109-118. Walse, S.S., Morgan, S.L., Kong, L. and Ferry, J.L. (2004) Role of Dissolved Organic Matter, Nitrate, and Bicarbonate in the Photolysis of Aqueous Fipronil. Environmental Science & Technology 38(14), 3908-3915. Wang, C.-J., Li, Z. and Jiang, W.-T. (2011) Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Applied Clay Science 53(4), 723-728. Wang, C.-J., Li, Z., Jiang, W.-T., Jean, J.-S. and Liu, C.-C. (2010) Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. Journal of Hazardous Materials 183(1), 309-314. Watkinson, A.J., Murby, E.J. and Costanzo, S.D. (2007) Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research 41(18), 4164-4176. Wei, X., Chen, J., Xie, Q., Zhang, S., Ge, L. and Qiao, X. (2013) Distinct Photolytic Mechanisms and Products for Different Dissociation Species of Ciprofloxacin. Environmental Science & Technology 47(9), 4284-4290. Wu, Q., Li, Z., Hong, H., Li, R. and Jiang, W.T. (2013) Desorption of ciprofloxacin from clay mineral surfaces. Water Res 47(1), 259-268. Wu, Q., Que, Z., Li, Z., Chen, S., Zhang, W., Yin, K. and Hong, H. (2018) Photodegradation of ciprofloxacin adsorbed in the intracrystalline space of montmorillonite. Journal of Hazardous Materials 359, 414-420. Zhang, H. and Huang, C.-H. (2005) Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide. Environmental Science & Technology 39(12), 4474-4483. Zhou, L.-J., Ying, G.-G., Zhao, J.-L., Yang, J.-F., Wang, L., Yang, B. and Liu, S. (2011) Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental Pollution 159(7), 1877-1885. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71800 | - |
dc.description.abstract | 環丙沙星 (Ciprofloxacin) 為奎諾酮類抗生素之一,此類抗生素被廣泛運用於人類以及動物之細菌性疾病治療,因此普遍在環境水體中檢出微量濃度。在自然水體中,光解為環丙沙星主要的降解途徑;然而,環境中之固體基質(例如:懸浮固體物與泥土)容易吸附環丙沙星,進而影響環丙沙星在自然水體中的光降解機制以及其在環境中的宿命。故本研究以高嶺土為實驗中之懸浮固體基質,進行環丙沙星於高嶺土懸浮水體中之光化學反應機制探討,並釐清其中各種反應機制進而推導出適當之模擬方程式以建立環丙沙星於高嶺土懸浮水體中之光降解模型。
本研究發現環丙沙星在高嶺土存在之水體中,其吸脫附平衡在30分鐘內即達到穩定,並且有 94-96% 之環丙沙星被吸附於高嶺土上;當光解機制參與作用時,環丙沙星在高嶺土懸浮液中相比在純水中更具持久性。在懸浮液中之光解速率遠低於在純水中之光解速率,並且其速率常數(ktotal)隨著高嶺土濃度(KAO)增加而降低(於 KAO = 2.5, 5.0 and 10.0 g L-1分別為ktotal = 0.014, 0.009 and 0.005 min-1 );在高嶺土懸浮液水相中,環丙沙星的濃度降低主要受懸浮液水相之光解速率(kW)以及脫附機制作用影響,另一方面在懸浮液固相上環丙沙星的濃度降低則是主要因脫附機制造成。光解模擬研究顯示推估之模擬模式對於環丙沙星之懸浮水體光解有極佳之模擬效果(平均相對誤差:± 5-20%),並指出吸附比例為關鍵的影響因素,其中分配係數(K(Ctotal))與高嶺土濃度(KAO)為此比例之重要影響參數;在此模型中,假設 K(Ctotal) 在光照的過程中維持恆定,不論是否有高嶺土存在kW皆保持為定值,且懸浮液固相之光解速率(kS)極小而可忽略。 相對地,在不同水體基質中高嶺土懸浮液之光解研究顯示,在景美溪水以及模擬河水中之環丙沙星(Ctotal)光降解較快,而較之於純水之光降解速率仍然較緩慢;其結果顯示K(Ctotal) 在不同水體基質之高嶺土懸浮液光解機制中仍為一重要影響因素;然而在模擬結果與實驗結果間之部分差異顯示,除了 K(Ctotal) 以外,其他水質參數如 pH 值和陽離子的存在可能會對吸脫附機制造成影響。此外。自然環境中的光敏性物質如硝酸根、碳酸根以及溶解性有機物可能利於懸浮水體中固相之光解,促使環丙沙星在自然水體中之光降解量略為提升。整體而言,本研究顯示當環境中高濃度固體懸物存在時,環丙沙星光降解半衰期延長將可能提高其環境風險故需更進一步調查與研究。 | zh_TW |
dc.description.abstract | Ciprofloxacin is a type of fluoroquinolone antibiotic that is widely used to treat the bacterial diseases of humans and has been frequently found in aquatic environments. The photolysis of ciprofloxacin is found to be one of the main natural attenuation process in the environment. However, it is also likely to be adsorbed onto solid matrices (e.g., suspended solids and soil), which may lead to the different photolysis mechanisms of ciprofloxacin in natural waters and its different fates in the environment. Therefore, the objectives of this study are to study the photochemical behavior of ciprofloxacin in a kaolinite suspension system and to clarify its mechanisms in this system to derive a suitable model simulating photodegradation in a suspension system.
In the presence of kaolinite, the sorption of ciprofloxacin quickly reached equilibrium within 30 min, and 94-96% of ciprofloxacin was adsorbed on kaolinite. When photolysis was involved, the ciprofloxacin in the kaolinite suspension system was more persistent under irradiation. The photodegradation rate of the total ciprofloxacin in kaolinite suspension (ktotal) was much slower than that in DI water, and ktotal decreased as the kaolinite concentration increased (ktotal = 0.014, 0.009 and 0.005 min-1 for KAO = 2.5, 5.0 and 10.0 g L-1, respectively). The disappearance of ciprofloxacin in liquid within the suspension was dominated by both photolysis (kW) and desorption processes. On the other hand, the disappearance of ciprofloxacin on the kaolinite within the suspension was controlled by the desorption process alone. A simulation fitted the results well (relative error: ± 5-20%), and the ratio between ciprofloxacin adsorbed on the kaolinite and in the water was the most important factor. The ratio depends on the partition coefficient (K(Ctotal)) and concentration of kaolinite (KAO). In the model, it was assumed that K(Ctotal) remains constant during irradiation, kW remains the same with or without kaolinite suspension, and photolysis on kaolinite within the suspension (kS) was ignored. In different aqueous matrices, the photodegradations of ciprofloxacin (Ctotal) in kaolinite suspension within synthetic river water and Jingmei River water were faster than that within DI water, but they were still slower than that in an aqueous system without suspension. K(Ctotal) was also considered an important factor affecting photolysis in suspension within different aqueous matrices. However, the difference between experimental data and simulation results indicates that in addition to the partition coefficient, factors such as the pH value and the presence of cations could affect the sorption equilibrium, and the presence of photosensitizers such as nitrate, bicarbonate and DOM may accelerate the photolysis on kaolinite within suspension. The results of this work indicated that previous works on photolysis in pure water phase may have underestimated the environmental risk of ciprofloxacin, as high concentrations of suspended solids may cause ciprofloxacin to have a longer half-life in the environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:10:15Z (GMT). No. of bitstreams: 1 ntu-107-R05541125-1.pdf: 2275918 bytes, checksum: 09f17e4f5c92efad71f410c5dabe030f (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract V Contents VII List of Figures IX List of Tables XI Chapter 1 Introduction 1 Chapter 2 Materials and Methods 8 2.1 Chemicals and Standards 8 2.2 Sorption Experiments 9 2.3 Desorption Experiments 9 2.4 Ultrasonic Extraction 10 2.5 Irradiation Experiments 12 2.6 Analytical Determinations 14 Chapter 3 Results and Discussion 16 3.1 Concept of photolysis of ciprofloxacin in kaolinite suspension 16 3.2 Ciprofloxacin sorption and desorption 19 3.3 Effect of kaolinite concentration on the photolysis of ciprofloxacin in kaolinite suspension 23 3.3.1 Photodegradation of total ciprofloxacin in kaolinite suspension 23 3.3.2 Disappearance of ciprofloxacin in liquid and on kaolinite within kaolinite suspension 26 3.3.3 Simulation of total ciprofloxacin in kaolinite suspension 29 3.4 Effect of aqueous matrix on the photolysis of ciprofloxacin in kaolinite suspension 33 3.4.1 The photodegradation of ciprofloxacin in different aqueous matrices 33 3.4.2 Disappearance of ciprofloxacin in liquid and on kaolinite within kaolinite suspension 36 3.4.3 Photodegradation of total ciprofloxacin in kaolinite suspension 39 3.5 Environmental relevance 42 Chapter 4 Conclusions and Suggestions 45 4.1 Conclusions 45 4.2 Suggestions 49 Chapter 5 References 51 | |
dc.language.iso | en | |
dc.title | 環丙沙星抗生素於高嶺土懸浮水體中之光降解機制 | zh_TW |
dc.title | Photolysis of Ciprofloxacin in Kaolinite Suspension | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳先琪,林逸彬 | |
dc.subject.keyword | 環丙沙星,光降解,高嶺土懸浮水體,模擬方程式, | zh_TW |
dc.subject.keyword | ciprofloxacin,photolysis,kaolinite suspension,simulation, | en |
dc.relation.page | 56 | |
dc.identifier.doi | 10.6342/NTU201804288 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-11-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。