Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/717
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑(Yi-You Huang)
dc.contributor.authorMenq-Rong Wuen
dc.contributor.author吳孟容zh_TW
dc.date.accessioned2021-05-11T05:00:04Z-
dc.date.available2020-12-02
dc.date.available2021-05-11T05:00:04Z-
dc.date.copyright2019-12-02
dc.date.issued2019
dc.date.submitted2019-11-12
dc.identifier.citation1. Chudakov, D. M., Matz, M.V., Lukyanov, S. &Lukyanov, K. A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiol. Rev. 90, 1103–1163 (2010).
2. Rao, J., Dragulescu-Andrasi, A. &Yao, H. Fluorescence imaging in vivo: recent advances. Curr. Opin. Biotechnol. 18, 17–25 (2007).
3. Contag, C. H. &Bachmann, M. H. Advances in In Vivo Bioluminescence Imaging of Gene Expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
4. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–11 (2010).
5. Hsieh, P. C. H. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13, 970–974 (2007).
6. DeBruyn, T., Fattah, S., Stieger, B., Augustijns, P. &Annaert, P. Sodium fluorescein is a probe substrate for hepatic drug transport mediated by OATP1B1 and OATP1B3. J. Pharm. Sci. 100, 5018–5030 (2011).
7. McArdle, S., Mikulski, Z. &Ley, K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J. Exp. Med. 213, 1117–31 (2016).
8. Kircher, M. F., Gambhir, S. S. &Grimm, J. Noninvasive cell-tracking methods. Nat. Rev. Clin. Oncol. 8, 677–688 (2011).
9. Comenge, J. et al. Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells in Vivo. ACS Nano 10, 7106–7116 (2016).
10. Dixon, J. E. et al. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proc. Natl. Acad. Sci. 113, E291–E299 (2016).
11. Duan, X. et al. The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia. Int. J. Nanomedicine 12, 6705–6719 (2017).
12. Sun, N., Lee, A. &Wu, J. C. Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat. Protoc. 4, 1192–1201 (2009).
13. Wang, H. et al. Trafficking Mesenchymal Stem Cell Engraftment and Differentiation in Tumor-Bearing Mice by Bioluminescence Imaging. Stem Cells 27, 1548–1558 (2009).
14. Schönitzer, V. et al. In vivo mesenchymal stem cell tracking with PET using the dopamine type 2 receptor and 18F-fallypride. J Nucl Med 55, 1342–1347 (2014).
15. Serganova, I., Ponomarev, V. &Blasberg, R. G. Radionuclide-based reporter gene imaging: Pre-clinical and clinical implementation and application. Nucl. Med. Rev. 15, 20–36 (2012).
16. Deans, A. E. et al. Cellular MRI Contrast via Coexpression of Transferrin Receptor and Ferritin. Magn Reson Med 56, 51–59 (2006).
17. Patrick, P. S. et al. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 111, 415–420 (2014).
18. Wu, M.-R. et al. Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging. FASEB J. 32, 1705–1715 (2018).
19. Hsu, P. D., Lander, E. S. &Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 157, 1262–1278 (2014).
20. Boni, L. et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg. Endosc. 29, 2046–2055 (2015).
21. Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat Mater 15, 235–242 (2016).
22. Alander, J. T. et al. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging 2012, 1–26 (2012).
23. Schaafsma, B. E. et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 104, 323–332 (2011).
24. James, N. S. et al. Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part - 1. Theranostics 3, 692–702 (2013).
25. Luo, S., Zhang, E., Su, Y., Cheng, T. &Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 32, 7127–38 (2011).
26. Guo, J. et al. Comparison of near-infrared fluorescent deoxyglucose probes with different dyes for tumor diagnosis in vivo. Contrast Media Mol. Imaging 7, 289–301 (2012).
27. Yu, S. et al. New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging. Sci. Rep. 6, 35942 (2016).
28. Weissleder, R. &Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).
29. Maarek, J.-M. I. et al. Measurement of cardiac output with indocyanine green transcutaneous fluorescence dilution technique. Anesthesiology 100, 1476–83 (2004).
30. Raabe, A., Beck, J., Gerlach, R., Zimmermann, M. &Seifert, V. Near-infrared Indocyanine Green Video Angiography: A New Method for Intraoperative Assessment of Vascular Flow. Neurosurgery 52, 132–139 (2003).
31. Werner, S. G. et al. Indocyanine Green-Enhanced Fluorescence Optical Imaging in Patients With Early and Very Early Arthritis: A Comparative Study With Magnetic Resonance Imaging. Arthritis Rheum. 65, 3036–3044 (2013).
32. Leevy, C. M., Smith, F., Longueville, J., Paumgartner, G. &Howard, M. M. Indocyanine Green Clearance as a Test for Hepatic Function. JAMA 200, 236 (1967).
33. Schaafsma, B. E. et al. Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecol. Oncol. 127, 126–130 (2012).
34. Porcu, E. P. et al. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol. Adv. 34, 768–789 (2016).
35. Shibasaki, Y. et al. Expression of indocyanine green-related transporters in hepatocellular carcinoma. J. Surg. Res. 193, 567–576 (2015).
36. Semenenko, I. et al. Evaluation of near infrared dyes as markers of P-glycoprotein activity in tumors. Front. Pharmacol. 15, 426 (2016).
37. Yoneya, S. et al. Binding properties of indocyanine green in human blood. Invest. Ophthalmol. Vis. Sci. 39, 1286–90 (1998).
38. deGraaf, W. et al. Transporters involved in the hepatic uptake of 99mTc-mebrofenin and indocyanine green. J. Hepatol. 54, 738–745 (2011).
39. Lutty, G. A. The acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol. Appl. Pharmacol. 44, 225–249 (1978).
40. Pauli, J. et al. Novel Fluorophores as Building Blocks for Optical Probes for In Vivo Near Infrared Fluorescence (NIRF) Imaging. J. Fluoresc. 20, 681–693 (2010).
41. Giacomini, K. M., Huang, S.-M. &Tweedie, D. J. K. M. G. Membrane transporters in drug development: The International Transporter Consortium. Nat Rev Drug Discov. 9, 215–236 (2010).
42. Ho, R. H. et al. Drug and Bile Acid Transporters in Rosuvastatin Hepatic Uptake: Function, Expression, and Pharmacogenetics. Gastroenterology 130, 1793–1806 (2006).
43. Alam, K. et al. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int. J. Mol. Sci. 19, E855 (2018).
44. Leonhardt, M. et al. Hepatic Uptake of the Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA: Role of Human Organic Anion Transporters. Drug Metab. Dispos. 38, 1024–1028 (2010).
45. Claro da Silva, T. et al. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol. Aspects Med. 34, 252–269 (2013).
46. Stieger, B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile Formation. Handbook of Experimental Pharmacology 201, (Springer, Berlin, Heidelberg, 2011).
47. Slijepcevic, D. et al. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 66, 1631–1643 (2017).
48. Nkongolo, S. et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J. Hepatol. 60, 723–731 (2014).
49. Donkers, J. M. et al. Reduced hepatitis B and D viral entry using clinically applied drugs as novel inhibitors of the bile acid transporter NTCP. Sci. Rep. 7, 15307 (2017).
50. Iwamoto, M. et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 443, 808–813 (2014).
51. Dawson, P. A. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb. Exp. Pharmacol. 201, 169–203 (2011).
52. Zheng, X., Ekins, S., Raufman, J.-P. &Polli, J. E. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol. Pharm. 6, 1591–1603 (2009).
53. Kramer, W. &Glombik, H. Bile acid reabsorption inhibitors (BARI): novel hypolipidemic drugs. Curr. Med. Chem. 13, 997–1016 (2006).
54. ASBT (apical sodium-dependent bile acid transporter). Available at: https://www.solvobiotech.com/transporters/asbt-transporter. (Accessed: 17thJune2019)
55. Crespi, C. L. &Stresser, D. M. Fluorometric screening for metabolism-based drug-drug interactions. J. Pharmacol. Toxicol. Methods 44, 325–331 (2000).
56. Gui, C., Obaidat, A., Chaguturu, R. &Hagenbuch, B. Development of a Cell-Based High-Throughput Assay to Screen for Inhibitors of Organic Anion Transporting Polypeptides 1B1 and 1B3. Curr. Chem. Genomics 4, 1–8 (2010).
57. Bednarczyk, D. Fluorescence-based assays for the assessment of drug interaction with the human transporters OATP1B1 and OATP1B3. Anal. Biochem. 405, 50–58 (2010).
58. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
59. Ray, P. D., Huang, B.-W. &Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).
60. Gottlieb, E., Armour, S. M., Harris, M. H. &Thompson, C. B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10, 709–717 (2003).
61. Ly, J. D., Grubb, D. R. &Lawen, A. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8, 115–128 (2003).
62. Hardikar, A. A., Marcus-Samuels, B., Geras-Raaka, E., Raaka, B. M. &Gershengorn, M. C. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc Natl Acad Sci U S A 100, 7117–7122 (2003).
63. Livak, K. J. &Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001).
64. Sane, F. et al. Coxsackievirus B4 can infect human pancreas ductal cells and persist in ductal-like cell cultures which results in inhibition of Pdx1 expression and disturbed formation of islet-like cell aggregates. Cell. Mol. Life Sci. 70, 4169–4180 (2013).
65. Lusic, H. &Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 113, 1641–66 (2013).
66. deBondt, R. B. J. et al. Detection of lymph node metastases in head and neck cancer: A meta-analysis comparing US, USgFNAC, CT and MR imaging. Eur. J. Radiol. 64, 266–272 (2007).
67. Breyer, R. J., Mulligan, M. E., Smith, S. E., Line, B. R. &Badros, A. Z. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol. 35, 632–640 (2006).
68. Ramalho, J. et al. Gadolinium-based contrast agent accumulation and toxicity: An update. American Journal of Neuroradiology 37, 1192–1198 (2016).
69. Gombert, P., Biaudet, H., deSeze, R., Pandard, P. &Carré, J. Toxicity of fluorescent tracers and their degradation byproducts. Int. J. Speleol. 46, 23–31 (2017).
70. Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–54 (2009).
71. Weber, J., Beard, P. C. &Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. 13, 639–650 (2016).
72. Qin, C. et al. Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci. Rep. 3, 1490 (2013).
73. Anton, L., Su, R. &Oraevsky, A. Melanin nanoparticles as a novel contrast agent for optoacoustic tomography. 3, (2015).
74. Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt 17, 56016 (2012).
75. Zhang, H. F., Maslov, K., Stoica, G. &Wang, L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotech 24, 848–851 (2006).
76. Laufer, J., Jathoul, A., Pule, M. &Beard, P. In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy. Biomed. Opt. Express 4, (2013).
77. Thakkar, N., Lockhart, A. C. &Lee, W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. AAPS J 17, 535–545 (2015).
78. Thorne, N., Inglese, J. &Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).
79. Patrick, P. S., Lyons, S. K., Rodrigues, T. B. &Brindle, K. M. Oatp1 Enhances Bioluminescence by Acting as a Plasma Membrane Transporter for d-luciferin. Mol. Imaging Biol. 16, 626–634 (2014).
80. Bower, D.V., Richter, J. K., vonTengg-Kobligk, H., Heverhagen, J. T. &Runge, V. M. Gadolinium-Based MRI Contrast Agents Induce Mitochondrial Toxicity and Cell Death in Human Neurons, and Toxicity Increases With Reduced Kinetic Stability of the Agent. Invest. Radiol. 54, 453–463 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/717-
dc.description.abstract報導基因開啟了生物學研究的一個新的世代,使得發育、癌症與分子生物學以及細胞治療有著突破性的進展。活體細胞能利用螢光顯微鏡、非侵入式活體影像系統、正子攝影與磁核造影來進行觀察。現今的活體細胞追蹤仍有限制,譬如說自體螢光干擾、影像擷取深度與報導基因的強弱。因此,我們著重於新的報導基因的開發。首先我們選出Apical sodium-dependent bile acid cotransporter (ASBT)、sodium taurocholate co-transporting polypeptide (NTCP)與organic anion-transporting polypeptides 1B3 (OATP1B3)來評估作為報導基因的可行性,因為這些基因所表現的蛋白主要負責物質的交換。並且,NCTP與OATP1B3能運輸近遠紅外光波段的靛氰綠(ICG)與核磁造影顯影劑的卜爾邁斯(Primovist) 。此外,因為ASBT與NCTP同屬於SLC10A家族所以ASBT也可能作為一個報導基因。因此,我們選擇ASBT、NTCP與OATP1B3來測試其作為報導基因的可行性。從體外細胞實驗結果可得知NTCP有最好的ICG運輸能力,OATP1B3次之,而ASBT最弱。接著我們保留NTCP與OATP1B3作進一步活體的細胞影像追蹤。出乎意料之外,OATP1B3攝取靛氰綠的能力比NCTP來的好並且從我們的體外與活體測試結果發現NCTP並無法攝取卜爾邁斯。整體實驗結果顯示OATP1B3為一個多功能且卓越的報導基因應用。
基於上述結論,我們進一步測試在癌症細胞追蹤與細胞治療上OATP1B3作為報導基因的可行性。帶有OATP1B3的HT-1080細胞腫瘤在注射靛氰綠後的九十六小時依然能在非侵入式影像系統中偵測出靛氰綠訊號,並且打入卜爾邁斯後也能利用核磁造影進行追蹤。我們更進一步將OATP1B3轉染至具有分化成胰島相似細胞能力的PANC-1上,而帶有OATP1B3的PANC-1腫瘤也能利用核磁造影進行追蹤。由此,我們對於OATP1B3作為報導基因應用於癌症生物學與細胞治療上更具有信心。
近來報導指出NTCP為B型與D型肝炎病毒的入口之一。因此,我們嘗試利用帶有NTCP的細胞建構藥物篩選平台。有潛力的治療藥物會與靛氰綠競爭NTCP這個入口所以可藉由競爭結果得知是否可作為治療藥物。若是靛氰綠訊號低者則表示其作為治療肝炎的效果可能較好。藉由這樣的特性,我們成功建構帶有NTCP細胞的肝炎藥物篩選平台。
綜合上述,OATP1B3可作為可信賴的報導基因應用於癌症生物學與細胞治療上;而NTCP則可以作為肝炎藥物篩選平台的應用。
zh_TW
dc.description.abstractReporter genes as a tracking tool open a new window for the investigation of biology and make huge progress in development, tumor, molecular biology, and cell therapy. Cells can be visualized through fluorescent microscopy, noninvasive in vivo imaging system (IVIS), positron emission tomography (PET), magnetic resonance imaging (MRI), etc. Currently, in vivo cell tracking still has a limitation, such as the autofluorescence, the penetration depth, and the intensity of the reporter. Thus, we focus on the new candidates as reporter genes. Apical sodium-dependent bile acid cotransporter (ASBT), sodium taurocholate co-transporting polypeptide (NTCP), and organic anion-transporting polypeptides 1B3 (OATP1B3) are what we address since they are membrane transporters responding for the exchange of many molecules. Besides, we predict NTCP and OATP1B3 could be applicable reporter genes because they can transport indocyanine green, near-infrared fluorophore, and Primovist, MR contrast. Furthermore, ASBT could serve as a reporter gene since ASBT and NTCP are derived from the same family- the SLC10A transporter gene family. Thus, we testify the feasibility of ASBT, NTCP, and OATP1B3 as reporter genes. The highest transportability for ICG was NCTP, the following was OATP1B3, and ASBT was the last in vitro. We remained NCTP and OATP1B3 for in vivo investigation. Unexpectedly, OATP1B3 had better transportability for ICG than NTCP in vivo. Moreover, it seemed that NTCP couldn’t intake Primovist in our in vitro and in vivo experiments. In summary, OATP1B3 was a superior reporter gene.
According to this concept, we further testified OATP1B3 as a reporter gene for tumor cell tracking and cell therapy. The xenograft of HT-1080 carrying OATP1B3 could be traced at least 96 h using IVIS after ICG administration and could be identified using MRI after Primovist injection. We further transduced OATP1B3 into PANC-1 cells which can be differentiated as pancreatic islet-like cells. The cellular functions of PANC-1 weren’t affected after OATP1B3 transduction. Moreover, the xenograft of PANC-1 carrying OATP1B3 could be visualized with MRI. We had more confidence about OATP1B3 as a reliable reporter gene for cell tracking in the fields of tumor biology and cell therapy.
We attempted to establish a drug screening platform using NTCP-expressing cells since NTCP has been reported that it is an entry for hepatitis virus B and D (HBV and HDV). The candidate drugs for HBV or HDV could be selected if the ICG intensity was decreased because they compete for the same entry-NTCP. The drug screening platform using NTCP-expressing cells was established successfully through the competition between ICG and the candidate drugs.
In conclusion, OATP1B3 could serve as a reliable reporter gene and applied for tumor biology and cell therapy. NTCP could use for HBV and HDV drug selection.
en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:00:04Z (GMT). No. of bitstreams: 1
ntu-108-D04548006-1.pdf: 4217902 bytes, checksum: 128c63762efe35308d8d2b0993b0738c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書(i)
誌謝(ii)
Abbreviation(iii)
中文摘要(v)
英文摘要(vii)
第一章 Introduction(1)
1.1 Imaging application and limitation(1)
1.1.1 Reporter system(1)
1.1.2 Cell tracking imaging application and limitation(2)
1.2 Indocyanine green (ICG)(3)
1.3 Membrane transporters(4)
1.3.1 Survey(4)
1.3.2 Organic-anion-transporting polypeptide 1B3 (OATP1B3)(5)
1.3.3 Sodium taurocholate cotransporting polypeptide (NTCP)(5)
1.3.4 Apical sodium-dependent bile acid cotransporter (ASBT)(5)
1.4 Drug screening platform(6)
第二章 Materials and methods(7)
2.1 Cell lines and culture(7)
2.2 Vector construction and cell transfection and transduction(8)
2.3 Cell viability(9)
2.4 Reactive oxygen species reaction(10)
2.5 Mitochondria membrane potential(10)
2.6 Differentiation Capacities(11)
2.7 Quantitative-PCR(11)
2.8 Western blotting(12)
2.9 Immunofluorescence(13)
2.10 Immunohistochemistry (IHC)(14)
2.11 Apoptosis analysis(15)
2.12 Animal experiments(15)
2.13 Xenograft(16)
2.14 Magnetic resonance imaging (MRI) in vitro(16)
2.15 Magnetic resonance imaging (MRI) in vivo(18)
2.16 Inductively coupled plasma mass spectrometry (ICP-MS) to detect Gd(19)
2.17 Experiments on the cellular uptake of ICG(19)
2.18 Fluorescence and bioluminescence imaging in vivo and ex vivo(21)
2.19 Luciferase assay(22)
2.20 Statistical analyses(22)
第三章 Results(23)
3.1 Confirmation of constructions(23)
3.2 Evaluation of the intake capacity of ICG in vitro(24)
3.3 Evaluation of the intake capacity of fluorescein isothiocyanate (FITC) in vitro(24)
3.4 Evaluation of the intake capacity of Primovist and other contrasts in vitro(25)
3.5 Evaluation of the intake of ICG in vivo and ex vivo(25)
3.6 Evaluation of the intake of Primovist in vivo(25)
3.7 The application of OATP1B3 for tumor cell tracking using IVIS(26)
3.8 The application of OATP1B3 for tumor cell tracking using MRI(26)
3.9 The application of OATP1B3 for PANC-1 islet-like cell tracking in cell therapy(26)
3.10 The utility of NTCP in a drug screening platform in vitro(27)
3.11 The application of OATP1B3 as a luminescent reporter(28)
第四章 Discussion(28)
4.1 Importance for establishing new imaging modality(28)
4.2 The comparison among ASBT, NTCP, and OATP1B3(29)
4.3 The retain of ICG in NTCP and OATP1B3 expressing cells(29)
4.4 The limitation of detective depth(29)
4.5 Photoacoustic imaging (PAI)(30)
4.6 Living cell addressing in MRI(31)
4.7 Bioluminescent imaging modality using OATP1B3(31)
4.8 NTCP is Primovist-transporter; however, it was not in our observation(31)
4.9 Drug screening platform(32)
4.10 The biosafety of fluorescent dyes and MR contrasts(32)
4.11 Future exploration(33)
References(35)
dc.language.isoen
dc.subject靛氰綠zh_TW
dc.subject報導基因zh_TW
dc.subject核磁造影zh_TW
dc.subject非侵入式活體影像系統zh_TW
dc.subject卜爾邁斯zh_TW
dc.subjectReporter genesen
dc.subjectICGen
dc.subjectPrimovisten
dc.subjectIVISen
dc.subjectMRIen
dc.title利用運輸通道蛋白建構報導基因系統與其相關應用zh_TW
dc.titleThe feasibility and applicability as multi-imaging reporter genes using NTCP and OATP1B3en
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.coadvisor蕭仲凱(Jong-Kai Hsiao)
dc.contributor.oralexamcommittee廖漢文(Hon-Man Liu),黃東明(Dong-Ming Huang),楊台鴻(Tai?Horng Young)
dc.subject.keyword報導基因,核磁造影,非侵入式活體影像系統,卜爾邁斯,靛氰綠,zh_TW
dc.subject.keywordReporter genes,MRI,IVIS,Primovist,ICG,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201904284
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-11-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf4.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved