Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71799
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宏志
dc.contributor.authorChieh-Yu Liangen
dc.contributor.author梁潔瑜zh_TW
dc.date.accessioned2021-06-17T06:10:13Z-
dc.date.available2021-03-11
dc.date.copyright2019-03-11
dc.date.issued2018
dc.date.submitted2018-11-21
dc.identifier.citation1 Sridhar, S., Brokstad, K. A. Cox, R. J. Influenza vaccination strategies: comparing inactivated and live attenuated influenza vaccines. Vaccines 3, 373-389 (2015).
2 World Health Organization. Influenza (Seasonal), <http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)> (2018).
3 van de Sandt, C. E., Kreijtz, J. H. Rimmelzwaan, G. F. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 4, 1438-1476, doi:10.3390/v4091438 (2012).
4 Sridhar, S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Frontiers in immunology 7, 195, doi:10.3389/fimmu.2016.00195 (2016).
5 Nachbagauer, R. Krammer, F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect 23, 222-228, doi:10.1016/j.cmi.2017.02.009 (2017).
6 Chiu, C. Openshaw, P. J. Antiviral B cell and T cell immunity in the lungs. Nat Immunol 16, 18-26, doi:10.1038/ni.3056 (2015).
7 Rosenblum, M. D., Way, S. S. Abbas, A. K. Regulatory T cell memory. Nat Rev Immunol 16, 90-101, doi:10.1038/nri.2015.1 (2016).
8 Rosato, P. C., Beura, L. K. Masopust, D. Tissue resident memory T cells and viral immunity. Curr Opin Virol 22, 44-50, doi:10.1016/j.coviro.2016.11.011 (2017).
9 Teijaro, J. R. et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. Journal of immunology (Baltimore, Md. : 1950) 187, 5510-5514, doi:10.4049/jimmunol.1102243 (2011).
10 Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95, 215-224, doi:10.1189/jlb.0313180 (2014).
11 Slütter, B. et al. Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity. Science immunology 2 (2017).
12 Zens, K. D., Chen, J. K. Farber, D. L. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1, doi:10.1172/jci.insight.85832 (2016).
13 Purcell, A. W., McCluskey, J. Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6, 404-414, doi:10.1038/nrd2224 (2007).
14 Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H. Murthy, A. K. Peptide Vaccine: Progress and Challenges. Vaccines (Basel) 2, 515-536, doi:10.3390/vaccines2030515 (2014).
15 Lin, P.-H. et al. Vaccine-induced antigen-specific regulatory T cells attenuate the antiviral immunity against acute influenza virus infection. Mucosal immunology, 1 (2018).
16 St Denis, T. G. et al. Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochem Photobiol Sci 10, 792-801, doi:10.1039/c0pp00326c (2011).
17 Davila, E., Velez, M. G., Heppelmann, C. J. Celis, E. Creating space: an antigen-independent, CpG-induced peripheral expansion of naive and memory T lymphocytes in a full T-cell compartment. Blood 100, 2537-2545, doi:10.1182/blood-2002-02-0401 (2002).
18 Tasaka, S. et al. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response. Respir Res 10, 84, doi:10.1186/1465-9921-10-84 (2009).
19 Shin, H. Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463-467, doi:10.1038/nature11522 (2012).
20 Ciabattini, A. et al. Characterization of the Antigen-Specific CD4(+) T Cell Response Induced by Prime-Boost Strategies with CAF01 and CpG Adjuvants Administered by the Intranasal and Subcutaneous Routes. Frontiers in immunology 6, 430, doi:10.3389/fimmu.2015.00430 (2015).
21 Diwan, M., Elamanchili, P., Cao, M. Samuel, J. Dose sparing of CpG oligodeoxynucleotide vaccine adjuvants by nanoparticle delivery. Current drug delivery 1, 405-412 (2004).
22 Hamdy, S., Haddadi, A., Hung, R. W. Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Advanced drug delivery reviews 63, 943-955 (2011).
23 Wang, Y., Wen, Q. Choi, S. FDA's regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 19, 5-9 (2016).
24 Mahmoud, E. A., Sankaranarayanan, J., Morachis, J. M., Kim, G. Almutairi, A. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug Chem 22, 1416-1421, doi:10.1021/bc200141h (2011).
25 Guedj, A. S. et al. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages. Int J Nanomedicine 10, 5965-5979, doi:10.2147/IJN.S82205 (2015).
26 Cruz, L. J. et al. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine 12, 491-510 (2017).
27 Allahyari, M. Mohit, E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 12, 806-828, doi:10.1080/21645515.2015.1102804 (2016).
28 Panyam, J., Zhou, W.-Z., Prabha, S., Sahoo, S. K. Labhasetwar, V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. The FASEB Journal 16, 1217-1226 (2002).
29 Hiremath, J. et al. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS One 11, e0151922, doi:10.1371/journal.pone.0151922 (2016).
30 Dhakal, S. et al. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. Journal of controlled release : official journal of the Controlled Release Society 247, 194-205, doi:10.1016/j.jconrel.2016.12.039 (2017).
31 Kim, T. H. Lee, H. K. Differential roles of lung dendritic cell subsets against respiratory virus infection. Immune Netw 14, 128-137, doi:10.4110/in.2014.14.3.128 (2014).
32 GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 205, 1621-1634, doi:10.1084/jem.20071365 (2008).
33 Waithman, J. et al. Resident CD8(+) and migratory CD103(+) dendritic cells control CD8 T cell immunity during acute influenza infection. PLoS One 8, e66136, doi:10.1371/journal.pone.0066136 (2013).
34 Wakim, L. M., Smith, J., Caminschi, I., Lahoud, M. H. Villadangos, J. A. Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol 8, 1060-1071, doi:10.1038/mi.2014.133 (2015).
35 Iborra, S. et al. Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1(+) Dendritic Cells. Immunity 45, 847-860, doi:10.1016/j.immuni.2016.08.019 (2016).
36 Silva, A. et al. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 33, 847-854 (2015).
37 Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633-645 (2014).
38 Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198-202 (2008).
39 Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6, 769-776, doi:10.1038/ni1223 (2005).
40 Jiang, S., Song, R., Popov, S., Mirshahidi, S. Ruprecht, R. M. Overlapping synthetic peptides as vaccines. Vaccine 24, 6356-6365, doi:10.1016/j.vaccine.2006.04.070 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71799-
dc.description.abstract流感病毒造成之區域性與全球性大流行至今仍為重要的公衛議題,因此廣效型流感疫苗的發展極具必要性。源自流感病毒蛋白中高度保留區域的抗原性胜肽能夠誘發可對抗多種流感病毒亞型的T細胞免疫反應,而PLGA奈米顆粒因其安全性與致免疫性,可做為理想的疫苗攜帶物質。綜合上述,我們設計了一種由PLGA奈米顆粒同時包裹佐劑CpG與胜肽的新型疫苗,並證明此疫苗相較於沒有包裹之胜肽疫苗能達到更好的專一性T細胞免疫反應,並降低全身性副作用。我們也探討了疫苗接種成效之決定因子,包含佐劑的使用以及周邊初打-局部加打 (peripheral priming – local boosting)策略的必要性。本研究指出,以周邊初打-局部加打的策略接種同時包裹佐劑與胜肽之PLGA奈米疫苗,能建立較多的循環型記憶性T細胞以及適量的肺常駐型記憶性T細胞,而更有效地對抗流感病毒感染。進一步探討該疫苗之作用機制,結果顯示PLGA奈米顆粒能被肺部中的肺泡巨噬細胞與樹突細胞內吞。總結本篇研究,一種新型的PLGA胜肽疫苗能於疫苗接種後被抗原呈現細胞吞噬,使其於作用階段與記憶階段建立有效的專一性T細胞免疫反應,因而能於宿主受到呼吸道病毒感染時達到較佳的保護效果。zh_TW
dc.description.abstractInfluenza epidemics and pandemics remain a major health problem nowadays, necessitating the development of universal influenza vaccines. Antigenic peptides derived from the conserved regions of viral proteins are candidates for eliciting T cell responses against a broad spectrum of influenza viruses. PLGA nanoparticles have been shown to be an ideal vaccine carrier for their safety and immunogenicity. Here, we demonstrated that a novel P(O+C) vaccine, a peptide-based vaccine co-encapsulated with the adjuvant CpG by the PLGA nanoparticle, achieved enhanced specific T cell immunity and minimal systemic adverse effects as compared with soluble peptide vaccines. Several determining factors regarding the vaccination were also investigated, including the presence of adjuvants, and the necessity of “peripheral priming – local boosting” strategy. We showed that the P(O+C) vaccine with the peripheral priming and local boosting strategy was able to establish a higher number of circulating memory T cells and intermediate amount of lung resident memory T cells, and conferred more potent antiviral activity against influenza virus infection. Looking into the mechanisms of such immunopotency, we revealed that the novel PLGA vaccine is uptaken by alveolar macrophages and dendritic cells in the lung. In conclusion, our novel P(O+C) vaccine can be internalized by antigen-presenting cells to elicit robust antigen-specific T cell immunity in both the effector and the memory phase after the immunization, thereby allowing a superior protection upon respiratory virus infections.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:10:13Z (GMT). No. of bitstreams: 1
ntu-107-R05445107-1.pdf: 3852887 bytes, checksum: 0b2a1f5b888d5e7a1f3814effca4920a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
1. Introduction 1
1.1 Influenza Epidemics and Influenza A Virus 1
1.2 Influenza Vaccines 2
1.3 Resident Memory T Cells 3
1.4 Peptide-based Vaccines 7
1.5 Prime-boost Vaccination Strategy 9
1.6 Poly-(D,L-lactic-co-glycolic acid) Nanoparticles 10
1.7 Dendritic Cells in the Lung and Mediastinal Lymph Node 12
2. Specific Aim 14
3. Materials and Methods 15
3.1 Mice 15
3.2 Adoptive transfer 15
3.3 Viruses and infection of mice 16
3.4 Quantification of viral titers 16
3.5 PLGA nanoparticles 17
3.6 Immunization of mice 17
3.7 Measurement of OVA257-264- and OVA323-339-specific T cells 18
3.8 Intravascular staining 18
3.9 Dendritic cell isolation from the lung and lymph node 18
3.10 Cell staining, antibodies, and flow cytometry 19
3.11 Histopathology 20
3.12 Statistical analyses 20
4. Results 21
4.1 Subcutaneous P(O+C) vaccination induces effective T cell responses with minimal adverse effects 21
4.2 Intranasal P(O+C) vaccination induces effective T cell responses with mild adverse effects 24
4.3 Intranasal boosting by a proper dose of P(O+C) confers protection against IAV infection 25
4.4 Peripheral-prime/local-boost P(O+C) vaccination enables an optimal clinical outcome upon IAV infection 27
4.5 Peripheral-prime/local-boost P(O+C) vaccination mediates optimal viral clearance upon IAV infection 28
4.6 Peripheral-prime/local-boost P(O+C) vaccination generates superior circulatory memory T cell populations 30
4.7 Alveolar macrophages and dendritic cells internalize PLGA nanoparticles. 31
5. Discussion 35
5.1 Brief summary of our findings 35
5.2 Unique advantage of our PLGA nanoparticles: the small size 35
5.3 Other advantages of our model: co-encapsulation of contents 36
5.4 Limitations of our system: transferred CD4+ T cells do not last 38
5.5 Further analyses required to determine lung pathology 38
5.6 Solving systemic side effects: aerosol administration? 39
5.7 Contributions of distinctive memory T cell populations to the protection against IAV infections remain unclear 40
5.8 Implications for future vaccines: intranasal priming not necessary 41
5.9 Developing a better vaccine 41
5.10 Conclusion 42
Figures 44
Supplementary Figures 61
References 63
dc.language.isoen
dc.title新型PLGA胜肽疫苗提供有效對抗A型流感病毒感染之T細胞免疫力zh_TW
dc.titleA Novel PLGA-encapsulated Peptide Vaccine Confers Robust Protective T-Cell Immunity against Influenza A Virus Infectionsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱清良,胡哲銘,陳慧文,顧家綺
dc.subject.keyword胜?疫苗,PLGA奈米顆粒,T細胞免疫,樹突細胞,流感病毒,zh_TW
dc.subject.keywordpeptide-based vaccine,PLGA nanoparticle,T cell immunity,dendritic cells,influenza virus,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201804291
dc.rights.note有償授權
dc.date.accepted2018-11-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved