Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71798
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔
dc.contributor.authorWei-Lun Huangen
dc.contributor.author黃偉倫zh_TW
dc.date.accessioned2021-06-17T06:10:11Z-
dc.date.available2018-11-29
dc.date.copyright2018-11-29
dc.date.issued2018
dc.date.submitted2018-11-22
dc.identifier.citation1. Health Promotion Administration, Ministry of Health and Welfare. Available from: https://www.hpa.gov.tw/Home/Index.aspx.
2. Chen, D., S. Lei, and Y. Chen, A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms. Sensors (Basel, Switzerland), 2011. 11(7): p. 6509-6516.
3. Manzoli, A., et al., Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness. Sensors (Basel, Switzerland), 2011. 11(6): p. 6425-6434.
4. Anderson, T., et al., Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors (Basel, Switzerland), 2009. 9(6): p. 4669-4694.
5. Chang, Y.-C., et al., Bromocresol Green/Mesoporous Silica Adsorbent for Ammonia Gas Sensing via an Optical Sensing Instrument. Sensors (Basel, Switzerland), 2011. 11(4): p. 4060-4072.
6. Cubillas, A.M., et al., Gas Sensor Based on Photonic Crystal Fibres in the 2ν(3) and ν(2) + 2ν(3) Vibrational Bands of Methane. Sensors (Basel, Switzerland), 2009. 9(8): p. 6261-6272.
7. Ding, B., et al., Gas Sensors Based on Electrospun Nanofibers. Sensors (Basel, Switzerland), 2009. 9(3): p. 1609-1624.
8. Ke, M.-T., et al., A MEMS-based Benzene Gas Sensor with a Self-heating WO(3) Sensing Layer. Sensors (Basel, Switzerland), 2009. 9(4): p. 2895-2906.
9. Kim, K.-S., et al., A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method. Sensors (Basel, Switzerland), 2010. 10(1): p. 765-774.
10. Kim, S.-J., et al., Design of Selective Gas Sensors Using Additive-Loaded In(2)O(3) Hollow Spheres Prepared by Combinatorial Hydrothermal Reactions. Sensors (Basel, Switzerland), 2011. 11(11): p. 10603-10614.
11. Gonzalez-Jimenez, J., J.G. Monroy, and J.L. Blanco, The Multi-Chamber Electronic Nose—An Improved Olfaction Sensor for Mobile Robotics. Sensors (Basel, Switzerland), 2011. 11(6): p. 6145-6164.
12. Song, K., et al., A Wireless Electronic Nose System Using a Fe(2)O(3) Gas Sensing Array and Least Squares Support Vector Regression. Sensors (Basel, Switzerland), 2011. 11(1): p. 485-505.
13. Kanan, S.M., et al., Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. Sensors (Basel, Switzerland), 2009. 9(10): p. 8158-8196.
14. Lazik, D., et al., Membrane Based Measurement Technology for in situ Monitoring of Gases in Soil. Sensors (Basel, Switzerland), 2009. 9(2): p. 756-767.
15. Chen, I.C., et al., The Assessment for Sensitivity of a NO(2) Gas Sensor with ZnGa(2)O(4)/ZnO Core-Shell Nanowires—a Novel Approach. Sensors (Basel, Switzerland), 2010. 10(4): p. 3057-3072.
16. Fine, G.F., et al., Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors (Basel, Switzerland), 2010. 10(6): p. 5469-5502.
17. Hulko, M., et al., Cytochrome C Biosensor—A Model for Gas Sensing. Sensors (Basel, Switzerland), 2011. 11(6): p. 5968-5980.
18. Liu, X., et al., A Survey on Gas Sensing Technology. Sensors (Basel, Switzerland), 2012. 12(7): p. 9635-9665.
19. Yamazoe, N. and K. Shimanoe, Theory of power laws for semiconductor gas sensors. Sensors and Actuators B: Chemical, 2008. 128(2): p. 566-573.
20. Wang, C., et al., Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors (Basel, Switzerland), 2010. 10(3): p. 2088-2106.
21. Song, X. and L. Liu, Characterization of electrospun ZnO–SnO2 nanofibers for ethanol sensor. Sensors and Actuators A: Physical, 2009. 154(1): p. 175-179.
22. Bai, H. and G. Shi, Gas Sensors Based on Conducting Polymers. Sensors (Basel, Switzerland), 2007. 7(3): p. 267-307.
23. Long, Y.-S., et al., Breath-Alcohol Measurement Traceability and Quality Assurance Certification in Application of Forensic Science. National Taiwan Police College Bulletin, 2012. 5(4): p. 161-178.
24. Sparkman, O., Review of Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Edition, Robert P. Adams. Allured Publishing Corporation, 362 S. Schmale Road, Carol Stream, IL 60188-2787, USA (2007), ISBN copyright, Hardcover Book $299, 804 pp; Hardcover Book and Electronic Format $749.00, ISBN: 978-1-932633-21-4. Vol. 18. 2007. 803–806.
25. Kim, K.-H., Performance characterization of the GC/PFPD for H2S, CH3SH, DMS, and DMDS in air. Atmospheric Environment, 2005. 39(12): p. 2235-2242.
26. Bakhirkin, Y.A., et al., Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Applied Optics, 2004. 43(11): p. 2257-2266.
27. Hodgkinson, J. and R. Tatam, Optical Gas Sensing: A Review. Vol. 24. 2012. 012004.
28. Moelders, N., et al., Development of optical MEMS carbon dioxide sensors. Vol. 4561. 2001.
29. Calaza, C., et al., Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing. IEEE Sensors Journal, 2003. 3(5): p. 587-594.
30. Chen, S., T. Yamaguchi, and K. Watanabe, A simple, low-cost non-dispersive infrared CO2 monitor. 2002. 107-110.
31. Himansu Mohan Padhy, P.M., Dr., Detection of Liquefied and Gaseous form of CO2 Implementing New Method in Non-Dispersive Infrared Spectroscopy Sensor System. Global Journal of Science Frontier Research, 2012. 12(2-H).
32. Noro, M., et al., CO2/H2O gas sensor using a tunable Fabry-Perot filter with wide wavelength range. 2003. 319-322.
33. Faist, J., F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Short wavelength (λ∼3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Applied Physics Letters, 1998. 72(6): p. 680-682.
34. Faist, J., et al., Quantum Cascade Laser. Science, 1994. 264(5158): p. 553-556.
35. Faugeras, C., et al., High-power room temperature emission quantum cascade lasers at λ=9 μm. IEEE Journal of Quantum Electronics, 2005. 41(12): p. 1430-1438.
36. Lin, S.Y., J.G. Fleming, and I. El-Kady, Highly efficient light emission at λ = 1.5 μm by a three-dimensional tungsten photonic crystal. Optics Letters, 2003. 28(18): p. 1683-1685.
37. O’Regan, B.J., Y. Wang, and T.F. Krauss, Silicon photonic crystal thermal emitter at near-infrared wavelengths. Scientific Reports, 2015. 5: p. 13415.
38. Pralle, M.U., et al., Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters, 2002. 81(25): p. 4685-4687.
39. Chen, C.-Y., et al., Coupling of surface plasmons between two silver films in a plasmonic thermal emitter. Applied Physics Letters, 2007. 91(24): p. 243111.
40. Ikeda, K., et al., Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Applied Physics Letters, 2008. 92(2): p. 021117.
41. Mason, J.A., et al., Selective thermal emission from patterned steel. Optics Express, 2010. 18(24): p. 25192-25198.
42. Miyazaki, H.T., et al., Thermal emission of two-color polarized infrared waves from integrated plasmon cavities. Applied Physics Letters, 2008. 92(14): p. 141114.
43. Tay, S., et al., Plasmonic thermal IR emitters based on nanoamorphous carbon. Applied Physics Letters, 2009. 94(7): p. 071113.
44. Tsai, M.-W., et al., High performance midinfrared narrow-band plasmonic thermal emitter. Applied Physics Letters, 2006. 89(17): p. 173116.
45. Abbas, M.N., et al., Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2. Applied Physics Letters, 2011. 98(12): p. 121116.
46. Chang, P.-E., et al., Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances. Applied Physics Letters, 2011. 98(7): p. 073111.
47. Chen, H.-H., et al., Double wavelength infrared emission by localized surface plasmonic thermal emitter. Applied Physics Letters, 2014. 104(8): p. 083114.
48. Liu, X., et al., Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 2011. 107(4): p. 045901.
49. Mason, J.A., S. Smith, and D. Wasserman, Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 2011. 98(24): p. 241105.
50. Ye, Y.-H., et al., Coupling of surface plasmons between two silver films in a Ag/SiO2/Ag plasmonic thermal emitter with grating structure. Applied Physics Letters, 2008. 93(26): p. 263106.
51. Ye, Y.-H., et al., Localized surface plasmon polaritons in Ag∕SiO2∕Ag plasmonic thermal emitter. Applied Physics Letters, 2008. 93(3): p. 033113.
52. Chen, H.-H., et al., Two infrared emission modes with different wavelengths and orthogonal polarization in a waveguide thermal emitter. Journal of Applied Physics, 2012. 112(7): p. 074325.
53. Wu, Y.T., et al., Narrow Bandwidth Midinfrared Waveguide Thermal Emitters. IEEE Photonics Technology Letters, 2010. 22(15): p. 1159-1161.
54. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424: p. 824.
55. Chen, Q. and D.R.S. Cumming, High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Optics Express, 2010. 18(13): p. 14056-14062.
56. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1): p. 3-15.
57. Lévêque, G. and O.J.F. Martin, Tunable composite nanoparticle for plasmonics. Optics Letters, 2006. 31(18): p. 2750-2752.
58. Cheng, C.-W., et al., Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Optics Express, 2012. 20(9): p. 10376-10381.
59. Hao, J., et al., High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010. 96(25): p. 251104.
60. Puscasu, I. and W.L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches. Applied Physics Letters, 2008. 92(23): p. 233102.
61. Liu, N., et al., Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Letters, 2010. 10(7): p. 2342-2348.
62. Todorov, Y., et al., Optical properties of metal-dielectric-metal microcavities in the THz frequency range. Optics Express, 2010. 18(13): p. 13886-13907.
63. Collin, S., F. Pardo, and J.-L. Pelouard, Waveguiding in nanoscale metallic apertures. Optics Express, 2007. 15(7): p. 4310-4320.
64. Lee, B.J. and Z.M. Zhang, Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006. 100(6): p. 063529.
65. Jiang, Y.-W., et al., Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter. Optics Letters, 2009. 34(20): p. 3089-3091.
66. Chen, H.-H., et al., Narrow bandwidth and highly polarized ratio infrared thermal emitter. Vol. 97. 2010. 163112-163112.
67. Huang, S., et al., Triple Peaks Plasmonic Thermal Emitter With Selectable Wavelength Using Periodic Block Pattern as Top Layer. IEEE Photonics Technology Letters, 2012. 24(10): p. 833-835.
68. Tsai, S.-R., et al., The effect of narrow bandwidth infrared radiation on the growth of Escherichia coli. Applied Physics Letters, 2011. 99(16): p. 163704.
69. Chang, H.-Y., et al., Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells. PLOS ONE, 2013. 8(1): p. e54117.
70. Chang, H.-Y., et al., Quantitative Proteomics Reveals Middle Infrared Radiation-Interfered Networks in Breast Cancer Cells. Journal of Proteome Research, 2015. 14(2): p. 1250-1262.
71. Chen, H.-J., C.-L. Chen, and H.-L. Hsieh, Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-Dependent and -Independent Pathways. PLOS ONE, 2015. 10(7): p. e0132723.
72. Guérer, A.L., Scent: The Mysterious and Essential Powers of Smell. 1992: Turtle Bay Books, A Division of Random House.
73. McFadden, J. and J. Al-Khalili, Life on the Edge: The Coming of Age of Quantum Biology. 2015: Crown/Archetype.
74. Eisner, R., Richard Axel: One of the Nobility in Science. P&S. Columbia University. Archived from the original on 1 June 2015. Retrieved 2007.
75. Dyson, G.M., Some aspects of the vibration theory of odor. Perfumery and Essential Oil Record, 1928.
76. S., S.C., On the Unpredictability of Odor. Angewandte Chemie International Edition, 2006. 45(38): p. 6254-6261.
77. Mori, K. and G.M. Shepherd, Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Seminars in cell biology, 1994. 5: p. 65-74
78. Turin, L., The Secret of Scent: Adventures in Perfume and the Science of Smell. 2007: HarperCollins.
79. Turin, L., A Spectroscopic Mechanism for Primary Olfactory Reception. Chemical Senses, 1996. 21: p. 773-791.
80. Franco, M.I., et al., Molecular vibration-sensing component in <em>Drosophila melanogaster</em> olfaction. Proceedings of the National Academy of Sciences, 2011. 108(9): p. 3797-3802.
81. Keller, A. and L.B. Vosshall, A psychophysical test of the vibration theory of olfaction. Nature Neuroscience, 2004. 7: p. 337.
82. Brookes, J.C., et al., Could Humans Recognize Odor by Phonon Assisted Tunneling? Physical Review Letters, 2007. 98(3): p. 038101.
83. 李嗣涔, 一物兩象 - 手指識字與念力的可能生理機制. 佛學與科學, 2015: p. 73-80.
84. 李嗣涔, 心靈的結構與物理. 佛學與科學, 2016: p. 8-15.
85. Wood, R.W., Philosophical Magazine, 1902. 4: p. 396-402.
86. Wood, R.W., Philosophical Magazine, 1912. 23: p. 310-317.
87. Rayleigh, L., Theory of Sound. Proc. Roy. Soc. , 1907. A79: p. 399.
88. Fano, U., The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222.
89. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
90. Kretschmann, E. and H. Raether, Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforsch, 1968. 23a: p. 2135-2136.
91. Junxi, Z., Z. Lide, and X. Wei, Surface plasmon polaritons: physics and applications. Journal of Physics D: Applied Physics, 2012. 45(11): p. 113001.
92. Langhammer, C., et al., Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Letters, 2008. 8(5): p. 1461-1471.
93. Wadell, C., T.J. Antosiewicz, and C. Langhammer, Optical Absorption Engineering in Stacked Plasmonic Au–SiO2–Pd Nanoantennas. Nano Letters, 2012. 12(9): p. 4784-4790.
94. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta, 2011. 706(1): p. 8-24.
95. Pakizeh, T., et al., Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. Journal of the Optical Society of America B, 2008. 25(4): p. 659-667.
96. Tserkezis, C., et al., Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures. Physical Review B, 2008. 78(16): p. 165114.
97. Dmitriev, A., et al., Gold–Silica–Gold Nanosandwiches: Tunable Bimodal Plasmonic Resonators. Small, 2007. 3(2): p. 294-299.
98. Pakizeh, T., et al., Magnetic-field enhancement in gold nanosandwiches. Optics Express, 2006. 14(18): p. 8240-8246.
99. Ekinci, Y., et al., Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Optics Express, 2008. 16(17): p. 13287-13295.
100. Hanarp, P., M. Käll, and D.S. Sutherland, Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography. The Journal of Physical Chemistry B, 2003. 107(24): p. 5768-5772.
101. Huang, W.-L., et al., Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement. Applied Physics Letters, 2016. 109(6): p. 063107.
102. 'The Nobel Prize in Physiology or Medicine 2004'. Nobelprize.org. Nobel Media AB 2014. Web. 14 Aug 2018. <http://www.nobelprize.org/nobel_prizes/medicine/laureates/2004/>.
103. Wright, R.H., Odour and molecular vibration. I. Quantum and thermodynamic considerations. Journal of Applied Chemistry, 1954. 4(11): p. 611-615.
104. Wright, R.H., Odour and Molecular Vibration. Nature, 1961. 190: p. 1101.
105. Moncrie, R.W., What is odor? A new Theory. American Perfumer, 1949. 54: p. 453.
106. Wolbarsht, M.L., Molecular Basis of Odor. John E. Amoore. The Quarterly Review of Biology, 1971. 46(2): p. 199-200.
107. Brookes, J., A. Horsfield, and A. Stoneham, The Swipe Card Model of Odorant Recognition. Sensors, 2012. 12(11): p. 15709.
108. Takane, S.-y. and J.B.O. Mitchell, A structure–odour relationship study using EVA descriptors and hierarchical clustering. Organic & Biomolecular Chemistry, 2004. 2(22): p. 3250-3255.
109. Gane, S., et al., Molecular Vibration-Sensing Component in Human Olfaction. PLOS ONE, 2013. 8(1): p. e55780.
110. Block, E., et al., Implausibility of the vibrational theory of olfaction. Proceedings of the National Academy of Sciences, 2015. 112(21): p. E2766-E2774.
111. Turin, L., et al., Plausibility of the vibrational theory of olfaction. Proceedings of the National Academy of Sciences, 2015. 112(25): p. E3154-E3154.
112. Vosshall, L.B., Laying a controversial smell theory to rest. Proceedings of the National Academy of Sciences, 2015. 112(21): p. 6525-6526.
113. Food and Drug Administration, Ministry of Health and Welfare. Available from: https://www.fda.gov.tw/tc/siteContent.aspx?sid=4321.
114. Merck KGaA, Darmstadt, Germany and/or its affiliates.
115. The National Institute of Standards and Technology, U.S. Department of Commerce.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71798-
dc.description.abstract本論文實現了一具有多波長發射與可選擇偏極化特性之可攜式紅外光熱輻射發射器。第一種類型的多波長紅外光發射器是利用相互耦合的侷域型表面電漿子模式所實現。通過實驗和有限差分時域模擬方法研究了金屬/電介質/金屬結構中的垂直和橫向侷域型表面電漿子共振模態。在具有簡單金屬光柵的三層金屬/電介質/金屬結構中引入周期性佈置的混合電介質材料,可實現多波長的侷域型表面電漿子紅外光發射器。橫向侷域型表面電漿子電場會往高折射率的區域集中,複合式侷域型表面電漿子的電場分布,類似於周期性排列的混合電介質層中的駐波模態,每個模態即對應不同階數的紅外光峰值。共振波長可藉由改變混合介電材料的組成與頂部金屬光柵的線寬來調變,也研究了紅外光元件的非色散發光和偏振特性。
在波導型熱輻射發射器的介電共振腔內引入一嵌入式金屬光柵,實現第二種類型的多波長紅外光發射器,其具有波長和偏振的高選擇性。兩個相互極化正交的波導共振模式,其電場分佈於介電共振腔內的不同區域。實驗量測的結果非常吻合有限差分時域分析的模擬結果。共振波長可藉由改變嵌入金屬條的週期,線寬,或位置來調變,也研究了多波長元件熱輻射發光頻譜的角度色散與極化特性。本論文實現了具極化與波長可選擇性的可攜式紅外光發射器,裝置的體積和重量分別為190×40×35立方公釐和235克。其可替換不同波長的紅外光晶片可用於不同應用。紅外光晶片通過由9伏特鋰電池輸入直流電流加熱至攝氏200℃操作溫度,其溫度可分別由電流控制器和外部數字顯示器調節和監控。不同極化方向的紅外光調變可藉由旋轉安裝在發射端口上的線偏振片來實驗。
本論文將窄頻紅外光應用於探討人類嗅覺理論的實驗。氣味分子中的鍵結振動可以被具有特定波長的紅外光照射所激發,利用受到激發的分子鍵結震動研究對人體嗅覺的影響。嗅覺實驗中採用具有碳-氫和碳-氧鍵結的檸檬醛和環十五烷酮的氣味分子,照射光源採用波長為3.5微米和5.8微米的窄頻紅外光。通過分析23個受試者的嗅覺實驗結果,顯示受到紅外光照射激發的分子鍵結振動確實影響了相當數量受試者所感受到的氣味變化。本論文研究結果支持”殘留自旋信息”理論,於吸收了紅外光的分子鍵結側的殘留光子自旋,其帶有的自旋信息才是產生與改變人類嗅覺意識的主因。
zh_TW
dc.description.abstractA portable infrared thermal emitter with multi- wavelength emission and selectable polarization characteristics was realized in this thesis. The first type of multi- wavelength infrared thermal emitter was achieved by utilizing the mutually coupled localized surface plasmon (LSP) modes. The vertical and the lateral LSP resonant modes in the metal/dielectric/metal (MDM) structure were investigated by the experimental and the simulated (finite-difference time-domain analysis, FDTD) methods. A multi-wavelength emission LSP infrared thermal emitter was achieved by introducing a periodic arrangement of hybrid dielectric materials with a simple metallic grating in a tri-layer metal/dielectric/metal structure. The lateral LSP fields were concentrated in the regions with high effective refractive index. The fields of the multiple LSP modes exhibit distribution patterns similar to that of a standing wave in the periodic arrangement of the hybrid dielectric layer, each of which presents an emission peak corresponding to a different modal order. The resonant wavelengths can be adjusted by altering the compositions of hybrid dielectric materials as well as the line width of top metallic grating. The non-dispersive emission and polarization characteristics of the device were studied.
The second type of multi-wavelength infrared thermal emitter with high selectivity of wavelengths and polarizations was achieved by introducing an embedded metal grating inside the dielectric resonant cavity of a waveguide thermal emitter. The electric fields of the waveguide modes with two orthogonal polarizations are distributed in different regions of the cavity. The measured experiments agree well with the simulation results of FDTD analysis. Resonant wavelengths can be adjusted by altering the period, the metallic line width, or the position of the embedded metallic strips. The angular dependence, the polarization characteristics, and the thermal radiation spectra of the multi-wavelength WTEs were investigated. A portable infrared emitter with selectable polarization and wavelength is realized. The volume and weight of the equipment is 190×40×35 mm3 and 235 g, respectively. The IR emitter chip with different emission wavelength is replaceable for different applications. The IR emitter chip is operated in a temperature of 200°C by an input DC electrical current supporting from a 9V lithium battery. The temperature of the IR chip can be adjusted and monitored by the current controller and the outer digital displayer, respectively. Switchable polarization emission has been realized by rotating a linear polarizer mounted on the emission port.
The narrow bandwidth infrared light sources were applied in the study of human olfactory theory. The bonding vibration in the odorant molecules could be excited by infrared light with specific wavelength. The effect of the excited molecular bonding vibration on the olfaction of human was studied. The odorant molecules of citral and cyclopentadecanone, which has C-H and C=O bonds, were adopted in the olfactory experiments. The narrow bandwidth infrared light with emission wavelength of 3.4 μm and 5.8 μm were utilized in the olfactory experiments. By analyzing the olfactory experimental results of 23 human subjects, the molecular bonding vibration excited by infrared illumination does affect the smell variations felt by a non-negligible number of subjects. This study supports the “residual spin information” theory that the residual photonic spins left near the sites of molecular-bonds which absorbed the photons contribute to the olfactory sense.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:10:11Z (GMT). No. of bitstreams: 1
ntu-107-D01941014-1.pdf: 7864036 bytes, checksum: 94341046ddc17501ddb07811c0813b3e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝.....i
摘要.....ii
Abstract.....iv
Contents.....vii
Figure Captions.....xi
List of Tables.....xx
Chapter 1 Introduction.....1
Chapter 2 The Fundamental Theorem of Surface Plasmon.....16
2.1 Surface plasmon polaritons on a flat metallic surface.....17
2.1.1 Transverse electric (TE) polarization mode.....18
2.1.2 Transverse magnetic (TM) polarization mode.....21
2.2 Excitation of surface plasmon polaritons on a metallic surface with periodic structure.....25
2.3 Sample fabrication processes.....28
2.4 Optical measurement and numerical simulation.....31
Chapter 3 Multiple Coupled Localized Surface Plasmon Infrared Thermal Emitter with Polarization Characteristics.....35
3.1 Vertical coupling of LSP resonance 36
3.1.1 LSP resonances in the isolated Au disks structures.....36
3.1.2 LSP resonances in the stacked Au/Al2O3/Au disks structures.....38
3.1.3 Fabrication processes of Au/Al2O3/Au tri-layer disks structures.....43
3.2 Vertical LSP coupling based thermal emitters.....46
3.2.1 The effect of metallic cavity length and effective refractive index.....46
3.2.2 Fabrication processes of metal-grating based LSPTEs.....51
3.3 Lateral coupling of LSP resonance 52
3.3.1 LSPTEs with a homogeneous dielectric layer.....52
3.3.2 LSPTEs with a hybrid dielectric layer.....54
3.3.3 Fabrication processes of multiple resonance LSPTEs with hybrid dielectric materials.....64
3.4 Thermal emissions of multi-mode coupled LSP infrared thermal emitter.....66
Chapter 4 Waveguide Resonances with Selectable Polarization in a Portable Infrared Thermal Emitter.....68
4.1 Single waveguide resonance mode in a waveguide thermal emitter 69
4.1.1 The effect of cavity length.....69
4.1.2 Fabrication processes of WTEs.....72
4.2 Multiple waveguide resonance modes in multi-layer structured waveguide thermal emitter.....73
4.2.1 The effect of different embedded metal line structure.....73
4.2.2 Fabrication processes of multi-wavelength WTEs.....84
4.3 Gap-LSP resonance mode in multi-layer structured waveguide thermal emitter.....87
4.4 Dispersion relations of multiple waveguide resonance.....89
4.5 Selectable polarization emissions with mutually orthogonal characteristics.....92
4.6 Portable infrared thermal emitter with selectable polarization and wavelength.....94
Chapter 5 Applications of Infrared Light in Human Sense of Smell.....98
5.1 Mainstream olfactory theories.....99
5.1.1 Vibratory theory of olfaction.....100
5.1.2 Shape theory of olfaction.....102
5.1.3 Weak shape theory (odotope theory) and swipe-card theory of olfaction.....104
5.1.4 Debate between different olfactory theories.....106
5.1.5 Spin-residual information theory of olfaction.....110
5.2 Olfactory experiment of odor molecules illuminating by infrared light.....113
5.2.1 Odorant molecules.....113
5.2.2 Infrared light sources.....115
5.2.3 Experimental setup preparation and procedures.....117
5.3 Experimental results and discussion.....121
Chapter 6 Conclusions.....132
References.....135
dc.language.isoen
dc.subject可攜式紅外光熱輻射器zh_TW
dc.subject自旋殘留信息理論zh_TW
dc.subject嗅覺zh_TW
dc.subject窄頻紅外光zh_TW
dc.subject表面電漿子zh_TW
dc.subject侷域型表面電漿zh_TW
dc.subject多波長發射zh_TW
dc.subjectPortable Infrared Thermal Emitteren
dc.subjectSpin-Residual information theoryen
dc.subjectMulti-Wavelength Emissionen
dc.subjectNarrow bandwidth Infrareden
dc.subjectOlfactoryen
dc.subjectPlasmonicen
dc.subjectLocalized Surface Plasmonen
dc.title具多波長/偏振選擇特性之可攜式窄頻紅外光熱發射器與應用zh_TW
dc.titlePortable Infrared Thermal Emitter with Narrowband/Selectable Multi-wavelength/Polarization Characteristic and Applicationsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee林浩雄,蔡熊光,林世明,林時彥,林清富
dc.subject.keyword窄頻紅外光,表面電漿子,侷域型表面電漿,多波長發射,可攜式紅外光熱輻射器,嗅覺,自旋殘留信息理論,zh_TW
dc.subject.keywordNarrow bandwidth Infrared,Plasmonic,Localized Surface Plasmon,Multi-Wavelength Emission,Portable Infrared Thermal Emitter,Olfactory,Spin-Residual information theory,en
dc.relation.page149
dc.identifier.doi10.6342/NTU201804294
dc.rights.note有償授權
dc.date.accepted2018-11-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved