Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡(Ching-I Huang)
dc.contributor.authorYo-Tong Wuen
dc.contributor.author吳友彤zh_TW
dc.date.accessioned2021-06-17T06:09:39Z-
dc.date.available2020-11-13
dc.date.copyright2020-11-13
dc.date.issued2020
dc.date.submitted2020-10-20
dc.identifier.citation1. Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789-1791, doi:10.1126/science.270.5243.1789.
2. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666-12731, doi:10.1021/acs.chemrev.5b00098.
3. Tedde, S.F.; Kern, J.; Sterzl, T.; Furst, J.; Lugli, P.; Hayden, O. Fully Spray Coated Organic Photodiodes. Nano Lett. 2009, 9, 980-983, doi:10.1021/nl803386y.
4. Do, K.; Ravva, M.K.; Wang, T.; Brédas, J.L. Computational Methodologies for Developing Structure–Morphology–Performance Relationships in Organic Solar Cells: A Protocol Review. Chem. Mater. 2016, 29, 346-354, doi:10.1021/acs.chemmater.6b03111.
5. Berger, P.R.; Kim, M. Polymer solar cells: P3HT: PCBM and beyond. J. Renew. Sustain. Ener. 2018, 10, 013508, doi:10.1063/1.5012992.
6. Gurney, R.S.; Lidzey, D.G.; Wang, T. A review of non-fullerene polymer solar cells: from device physics to morphology control. Rep. Prog. Phys. 2019, 82, 036601, doi:10.1088/1361-6633/ab0530.
7. Milián Medina, B.; Van Vooren, A.; Brocorens, P.; Gierschner, J.; Shkunov, M.; Heeney, M.; McCulloch, I.; Lazzaroni, R.; Cornil, J. Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study. Chem. Mater. 2007, 19, 4949-4956, doi:10.1021/cm071279m.
8. Jansen-van Vuuren, R.D.; Armin, A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Adv. Mater. 2016, 28, 4766-4802, doi:10.1002/adma.201505405.
9. Yoon, S.; Sim, K.M.; Chung, D.S. Prospects of colour selective organic photodiodes. J. Mater. Chem. C 2018, 6, 13084-13100, doi:10.1039/c8tc04371j.
10. Yu, G.; Wang, J.; McElvain, J.; Heeger, A.J. Large‐Area, Full‐Color Image Sensors Made with Semiconducting Polymers. Adv. Mater. 1998, 10, 1431-1434, doi:10.1002/(SICI)1521-4095(199812)10:17<1431::AID-ADMA1431>3.0.CO;2-4.
11. Yu, G.; Srdanov, G.; Wang, J.; Wang, H.; Cao, Y.; Heeger, A.J. Large area, full-color, digital image sensors made with semiconducting polymers. Synth. Met. 2000, 111, 133-137, doi:Doi 10.1016/S0379-6779(99)00327-6.
12. Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.L.; Nilsson, B.; Heeger, A.J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 2009, 325, 1665-1667, doi:10.1126/science.1176706.
13. Arca, F. Organic photodiodes for industrial sensing and medical imaging. Doctoral dissertation, Technische Universität München, München, Germany, 2013.
14. Nalwa, K.S.; Cai, Y.; Thoeming, A.L.; Shinar, J.; Shinar, R.; Chaudhary, S. Polythiophene-Fullerene Based Photodetectors: Tuning of Spectral Response and Application in Photoluminescence Based (Bio)Chemical Sensors. Adv. Mater. 2010, 22, 4157-4161, doi:10.1002/adma.201000417.
15. Shafian, S.; Hwang, H.; Kim, K. Near infrared organic photodetector utilizing a double electron blocking layer. Opt. Express 2016, 24, 25308-25316, doi:10.1364/OE.24.025308.
16. Xie, B.; Chen, Z.; Ying, L.; Huang, F.; Cao, Y. Near‐infrared organic photoelectric materials for light‐harvesting systems: Organic photovoltaics and organic photodiodes. InfoMat 2019, 2, 57-91, doi:10.1002/inf2.12063.
17. Arredondo, B.; Romero, B.; Pena, J.M.; Fernandez-Pacheco, A.; Alonso, E.; Vergaz, R.; de Dios, C. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector. Sensors 2013, 13, 12266-12276, doi:10.3390/s130912266.
18. Yang, D.; Ma, D. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications. Adv. Opt. Mater. 2019, 7, 1800522, doi:10.1002/adom.201800522.
19. Elumalai, N.K.; Uddin, A. Open circuit voltage of organic solar cells: an in-depth review. Energy Environ. Sci. 2016, 9, 391-410, doi:10.1039/c5ee02871j.
20. Jao, M.H.; Liao, H.C.; Su, W.F. Achieving a high fill factor for organic solar cells. J. Mater. Chem. A 2016, 4, 5784-5801, doi:10.1039/c6ta00126b.
21. Kielar, M.; Dhez, O.; Pecastaings, G.; Curutchet, A.; Hirsch, L. Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications. Sci. Rep. 2016, 6, 39201, doi:10.1038/srep39201.
22. Fukuda, T.; Kobayashi, R.; Kamata, N.; Aihara, S.; Seo, H.; Hatano, K.; Terunuma, D. Improvements in Photoconductive Characteristics of Organic Device Using Silole Derivative. Jpn. J. Appl. Phys. 2010, 49, 01AC05, doi:10.1143/Jjap.49.01ac05.
23. Fukuda, T.; Kimura, S.; Kobayashi, R.; Furube, A. Ultrafast study of charge generation and device performance of a silole-doped fluorene-mixed layer for blue-sensitive organic photoconductive devices. Phys. Status Solidi A 2013, 210, 2674-2682, doi:10.1002/pssa.201329366.
24. Jansen-van Vuuren, R.D.; Pivrikas, A.; Pandey, A.K.; Burn, P.L. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. J. Mater. Chem. C 2013, 1, 3532-3543, doi:10.1039/c3tc30472h.
25. Pandey, A.K.; Johnstone, K.D.; Burn, P.L.; Samuel, I.D.W. Solution-processed pentathiophene dendrimer based photodetectors for digital cameras. Sens. Actuators B Chem. 2014, 196, 245-251, doi:10.1016/j.snb.2014.01.049.
26. Armin, A.; Jansen-van Vuuren, R.D.; Kopidakis, N.; Burn, P.L.; Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 2015, 6, 6343, doi:10.1038/ncomms7343.
27. Kim, S.K.; Park, S.; Son, H.J.; Chung, D.S. Synthetic Approach To Achieve a Thin-Film Red-Selective Polymer Photodiode: Difluorobenzothiadiazole-Based Donor-Acceptor Polymer with Enhanced Space Charge Carriers. Macromolecules 2018, 51, 8241-8247, doi:10.1021/acs.macromol.8b01751.
28. Mihailetchi, V.D.; Xie, H.; de Boer, B.; Koster, L.J.A.; Blom, P.W.M. Charge Transport and Photocurrent Generation in Poly (3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2006, 16, 699-708, doi:10.1002/adfm.200500420.
29. Keivanidis, P.E.; Howard, I.A.; Friend, R.H. Intermolecular Interactions of Perylene diimides in Photovoltaic Blends of Fluorene Copolymers: Disorder Effects on Photophysical Properties, Film Morphology and Device Efficiency. Adv. Funct. Mater. 2008, 18, 3189-3202, doi:10.1002/adfm.200800356.
30. Ramuz, M.; Burgi, L.; Winnewisser, C.; Seitz, P. High sensitivity organic photodiodes with low dark currents and increased lifetimes. Org. Electron. 2008, 9, 369-376, doi:10.1016/j.orgel.2008.01.007.
31. Gong, X.; Tong, M.H.; Park, S.H.; Liu, M.; Jen, A.; Heeger, A.J. Semiconducting polymer photodetectors with electron and hole blocking layers: high detectivity in the near-infrared. Sensors 2010, 10, 6488-6496, doi:10.3390/s100706488.
32. Keivanidis, P.E.; Ho, P.K.H.; Friend, R.H.; Greenham, N.C. The Dependence of Device Dark Current on the Active-Layer Morphology of Solution-Processed Organic Photodetectors. Adv. Funct. Mater. 2010, 20, 3895-3903, doi:10.1002/adfm.201000967.
33. Christ, N.; Kettlitz, S.W.; Zuefle, S.; Valouch, S.; Lemmer, U. Nanosecond response of organic solar cells and photodiodes: Role of trap states. Phys. Rev. B 2011, 83, 195211, doi:10.1103/PhysRevB.83.195211.
34. Arca, F.; Tedde, S.F.; Sramek, M.; Rauh, J.; Lugli, P.; Hayden, O. Interface Trap States in Organic Photodiodes. Sci. Rep. 2013, 3, 1324, doi:10.1038/srep01324.
35. Popescu, B.V.; Popescu, D.H.; Lugli, P.; Locci, S.; Arca, F.; Tedde, S.F.; Sramek, M.; Hayden, O. Modeling and Simulation of Organic Photodetectors for Low Light Intensity Applications. IEEE Trans. Electron Devices 2013, 60, 1975-1981, doi:10.1109/Ted.2013.2259239.
36. Armin, A.; Hambsch, M.; Kim, I.K.; Burn, P.L.; Meredith, P.; Namdas, E.B. Thick junction broadband organic photodiodes. Laser Photonics Rev. 2014, 8, 924-932, doi:10.1002/lpor.201400081.
37. Yoon, S.; Cho, J.; Sim, K.M.; Ha, J.; Chung, D.S. Low dark current inverted organic photodiodes using anionic polyelectrolyte as a cathode interlayer. Appl. Phys. Lett. 2017, 110, doi:10.1063/1.4977025.
38. Fallahpour, A.H.; Kienitz, S.; Lugli, P. Origin of Dark Current and Detailed Description of Organic Photodiode Operation Under Different Illumination Intensities. IEEE Trans. Electron Devices 2017, 64, 2649-2654, doi:10.1109/Ted.2017.2696478.
39. Simone, G.; Dyson, M.J.; Weijtens, C.H.L.; Meskers, S.C.J.; Coehoorn, R.; Janssen, R.A.J.; Gelinck, G.H. On the Origin of Dark Current in Organic Photodiodes. Adv. Opt. Mater. 2020, 8, 1901568, doi:10.1002/adom.201901568.
40. Salamandra, L.; La Notte, L.; Fazolo, C.; Di Natali, M.; Penna, S.; Mattiello, L.; Cina, L.; Del Duca, R.; Reale, A. A comparative study of organic photodetectors based on P3HT and PTB7 polymers for visible light communication. Org. Electron. 2020, 81, 105666, doi:10.1016/j.orgel.2020.105666.
41. Liua, Z.X.; Laub, T.K.; Zhouc, G.; Lia, S.; Rena, J.; Dasa, S.K.; Xiad, R.; Wua, G.; Zhuc, H.; Lub, X., et al. Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy 2019, 63, 103807, doi:10.1016/j.nanoen.2019.06.003.
42. Bencheikh, F.; Duché, D.; Ruiz, C.M.; Simon, J.J.; Escoubas, L. Study of Optical Properties and Molecular Aggregation of Conjugated Low Band Gap Copolymers: PTB7 and PTB7-Th. J. Phys. Chem. C 2015, 119, 24643-24648, doi:10.1021/acs.jpcc.5b07803.
43. Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267-4295, doi:10.1002/adma.201204979.
44. Street, R.A. Thermal generation currents in hydrogenated amorphous siliconp‐i‐nstructures. Appl. Phys. Lett. 1990, 57, 1334-1336, doi:10.1063/1.103475.
45. Maimon, S.; Wicks, G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett 2006, 89, doi:10.1063/1.2360235.
46. Marozas, B.T.; Hughes, W.D.; Du, X.; Sidor, D.E.; Savich, G.R.; Wicks, G.W. Surface dark current mechanisms in III-V infrared photodetectors [Invited]. Opt. Mater. Express 2018, 8, doi:10.1364/ome.8.001419.
47. Wong, J.Y. Effect of Trap Tunneling on the Performance of Long-Wavelength Hg 1-x Cd x Te Photodiodes. IEEE Trans. Electron Devices 1980, 27, 48-57, doi:10.1109/T-ED.1980.19818.
48. Forrest, S.R.; Leheny, R.F.; Nahory, R.E.; Pollack, M.A. In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling. Appl. Phys. Lett 1980, 37, 322-325, doi:10.1063/1.91922.
49. Hu, W.D.; Chen, X.S.; Yin, F.; Quan, Z.J.; Ye, Z.H.; Hu, X.N.; Li, Z.F.; Lu, W. Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors. J. Appl. Phys. 2009, 105, doi:10.1063/1.3130163.
50. Sah, C.T.; Noyce, R.N.; Shockley, W. Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics. Proc. IRE 1957, 45, 1228-1243, doi:10.1109/JRPROC.1957.278528.
51. Schoolar, R. Price, S. Rosbeck, J. Investigation of the generation–recombination currents in HgCdTe midwavelength infrared photodiodes. J. Vac. Sci. Technol. B 1992, 10, doi:10.1116/1.586279.
52. Khanna, V.K. Carrier lifetimes and recombination–generation mechanisms in semiconductor device physics. Eur. J. Phys 2004, 25, 221-237, doi:10.1088/0143-0807/25/2/009.
53. Wetzelaer, G.A.H.; Kuik, M.; Lenes, M.; Blom, P.W.M. Origin of the dark-current ideality factor in polymer:fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2011, 99, 153506, doi:10.1063/1.3651752.
54. Bonifacio, V.D.; Pires, R.F. Photodiodes: Principles and recent advances. J. Mat. NanoSci. 2019, 6, 38-46.
55. Savich, G.R.; Sidor, D.E.; Du, X.; Morath, C.P.; Cowan, V.M.; Wicks, G.W. Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors. Appl. Phys. Lett. 2015, 106, doi:10.1063/1.4919450.
56. Kim, S.H.; Lee, J.; Cho, E.; Lee, J.; Yun, D.J.; Lee, D.; Kim, Y.; Ro, T.; Heo, C.J.; Lee, G.H., et al. The role of defects in organic image sensors for green photodiode. Sci. Rep. 2019, 9, 1745, doi:10.1038/s41598-018-36105-9.
57. Guo, F.W.; Xiao, Z.G.; Huang, J.S. Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross-Linkable Buffer Layer. Adv. Opt. Mater. 2013, 1, 289-294, doi:10.1002/adom.201200071.
58. Trznadel, M.; Pron, A.; Zagorska, M.; Chrzaszcz, R.; Pielichowski, J. Effect of Molecular Weight on Spectroscopic and Spectroelectrochemical Properties of Regioregular Poly(3-hexylthiophene). Macromolecules 1998, 31, 5051-5058, doi:10.1021/ma970627a.
59. Senevirathne, M.S.; Nanayakkara, A.; Senadeera, G.K.R. A theoretical investigation of band gaps of conducting polymers with heterocycles. J. Natl. Sci. Found. 2011, 39, 183-185.
60. Torras, J.; Casanovas, J.; Aleman, C. Reviewing Extrapolation Procedures of the Electronic Properties on the π-Conjugated Polymer Limit. J. Phys. Chem. A 2012, 116, 7571-7583, doi:10.1021/jp303584b.
61. Huang, Y.C.; Lu, T.C.; Huang, C.I. Exploring the correlation between molecular conformation and UV-visible absorption spectra of two-dimensional thiophene-based conjugated polymers. Polymer 2013, 54, 6489-6499, doi:10.1016/j.polymer.2013.09.037.
62. Ansari, M.A.; Mohiuddin, S.; Kandemirli, F.; Malik, M.I. Synthesis and characterization of poly(3-hexylthiophene): improvement of regioregularity and energy band gap. RSC Adv. 2018, 8, 8319-8328, doi:10.1039/c8ra00555a.
63. Tsoi, W.C.; Spencer, S.J.; Yang, L.; Ballantyne, A.M.; Nicholson, P.G.; Turnbull, A.; Shard, A.G.; Murphy, C.E.; Bradley, D.D.C.; Nelson, J., et al. Effect of Crystallization on the Electronic Energy Levels and Thin Film Morphology of P3HT:PCBM Blends. Macromolecules 2011, 44, 2944-2952, doi:10.1021/ma102841e.
64. Darling, S.B. Isolating the Effect of Torsional Defects on Mobility and Band Gap in Conjugated Polymers. J. Phys. Chem. B 2008, 112, 8891-8895, doi:10.1021/jp8017919.
65. Bhatta, R.S.; Tsige, M. Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: A first-principles study. Polymer 2014, 55, 2667-2672, doi:10.1016/j.polymer.2014.04.022.
66. Acevedo-Peña, P.; Baray-Calderón, A.; Hu, H.; González, I.; Ugalde-Saldivar, V.M. Measurements of HOMO-LUMO levels of poly(3-hexylthiophene) thin films by a simple electrochemical method. J. Solid State Electrochem. 2017, 21, 2407-2414, doi:10.1007/s10008-017-3587-2.
67. Meng, L.; Shang, Y.; Li, Q.; Li, Y.; Zhan, X.; Shuai, Z.; Kimber, R.G.; Walker, A.B. Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics. J. Phys .Chem. B 2010, 114, 36-41, doi:10.1021/jp907167u.
68. Groves, C.; Kimber, R.G.; Walker, A.B. Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method. J. Chem. Phys. 2010, 133, 144110, doi:10.1063/1.3483603.
69. Kipp, D.; Ganesan, V. A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells. J. Appl. Phys. 2013, 113, 234502, doi:doi.org/10.1063/1.4811337.
70. Casalegno, M.; Bernardi, A.; Raos, G. Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches. J. Chem. Phys. 2013, 139, 024706, doi:10.1063/1.4812826.
71. Albes, T. Kinetic Monte Carlo Modelling of Bulk-Heterojunction Organic Solar Cells. Master thesis, Technische Universität München, München, Germany, 2014.
72. Jones, M.L.; Chakrabarti, B.; Groves, C. Monte Carlo Simulation of Geminate Pair Recombination Dynamics in Organic Photovoltaic Devices: Multi-Exponential, Field-Dependent Kinetics and Its Interpretation. J. Phys. Chem. C 2014, 118, 85-91, doi:10.1021/jp408063f.
73. Albes, T.; Lugli, P.; Gagliardi, A. Investigation of the Blend Morphology in Bulk-Heterojunction Organic Solar Cells. IEEE T. Nanotechnol. 2016, 15, 281-288, doi:10.1109/Tnano.2016.2521478.
74. Albes, T.; Gagliardi, A. Influence of permittivity and energetic disorder on the spatial charge carrier distribution and recombination in organic bulk-heterojunctions. Phys. Chem. Chem. Phys. 2017, 19, 20974-20983, doi:10.1039/c7cp03513f.
75. Albes, T.; Xu, L.; Wang, J.; Hsu, J.W.P.; Gagliardi, A. Origin of Photocurrent in Fullerene-Based Solar Cells. J. Phys. Chem. C 2018, 122, 15140-15148, doi:10.1021/acs.jpcc.8b03941.
76. 蔡孟宏. 檢視異質接面高分子太陽能電池光電轉換效率之關鍵影響因素. 碩士論文, 國立臺灣大學, 臺北市, 中華民國(臺灣), 2019.
77. 楊鎰鴻. 藉由動態蒙地卡羅模擬方法探討高效率高分子太陽能電池其高轉換效率之關鍵因素. 碩士論文, 國立臺灣大學, 臺北市, 中華民國(臺灣), 2019.
78. Watkins, P.K.; Walker, A.B.; Verschoor, G.L.B. Dynamical Monte Carlo modelling of Organic Solar Cells: The Dependence of Internal Quantum Efficiency on Morphology. Nano Lett. 2005, 5, 1814-1818, doi:10.1021/nl051098o.
79. Marsh, R.A.; Groves, C.; Greenham, N.C. A microscopic model for the behavior of nanostructured organic photovoltaic devices. J. Appl. Phys. 2007, 101, 083509, doi:10.1063/1.2718865.
80. Yang, F.; Forrest, S.R. Photocurrent generation in nanostructured organic solar cells. ACS Nano 2008, 2, 1022-1032, doi:10.1021/nn700447t.
81. Casalegno, M.; Raos, G.; Po, R. Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions. J. Chem. Phys. 2010, 132, 094705, doi:10.1063/1.3337909.
82. Meng, L.; Wang, D.; Li, Q.; Yi, Y.; Bredas, J.L.; Shuai, Z. An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices. J. Chem. Phys. 2011, 134, 124102, doi:10.1063/1.3569130.
83. Wei, F.; Liu, L.; Liu, L.; Li, G. Multiscale Modeling and Simulation for Optimizing Polymer Bulk Heterojunction Solar Cells. IEEE J. Photovolt. 2013, 3, 300-309, doi:10.1109/Jphotov.2012.2216507.
84. Khodakarimi, S.; Hekmatshoar, M.H.; Abbasi, F. Monte Carlo simulation of transport coefficient in organic solar cells. Appl. Phys. A 2016, 122, 140, doi:10.1007/s00339-016-9679-5.
85. Neupane, U.; Bahrami, B.; Biesecker, M.; Baroughi, M.F.; Qiao, Q. Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness. Nano Energy 2017, 35, 128-137, doi:10.1016/j.nanoen.2017.03.041.
86. 王寶慶. 運用光學轉換矩陣及動態蒙地卡羅方法探究微結構形態對於高分子太陽能電池光電轉換效率的影響. 碩士論文, 國立臺灣大學, 臺北市, 中華民國(臺灣), 2020.
87. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 2005, 98, 043704, doi:10.1063/1.2008386.
88. Dang, M.T.; Hirsch, L.; Wantz, G. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Adv. Mater. 2011, 23, 3597-3602, doi:10.1002/adma.201100792.
89. Munshi, J.; Dulal, R.; Chien, T.; Chen, W.; Balasubramanian, G. Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT/PCBM Thin Films. ACS Appl. Mater. Interfaces 2019, 11, 17056-17067, doi:10.1021/acsami.9b02719.
90. Kadem, B.; Alfahed, R.K.F.; Al-Asadi, A.S.; Badran, H.A. Morphological, structural, optical, and photovoltaic cell of copolymer P3HT: ICBA and P3HT:PCBM. Optik 2020, 204, 164153, doi:10.1016/j.ijleo.2019.164153.
91. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 1925, 31, 253-258, doi:10.1007/BF02980577.
92. Moon, J.S.; Lee, J.K.; Cho, S.; Byun, J.; Heeger, A.J. “Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials. Nano lett. 2009, 9, 230-234, doi:10.1021/nl802821h.
93. Strobl, G.R.; Schneider, M. Direct Evaluation of the Electron Density Correlation Function of Partially Crystalline Polymers. J. Polymer Sci. Polymer Phys. Ed.
1980, 18, 1343-1359, doi:10.1002/pol.1980.180180614.
94. Heffner, G.W.;Pearson, D.S. Molecular Characterization of Poly(3-hexylthiophene). Macromolecules 1991, 24, 6295-6299.
95. Forster, S.; Kohl, E.; Ivanov, M.; Gross, J.; Widdra, W.; Janke, W. Polymer adsorption on reconstructed Au(001): a statistical description of P3HT by scanning tunneling microscopy and coarse-grained Monte Carlo simulations. J. Chem. Phys. 2014, 141, 164701, doi:10.1063/1.4898382.
96. Morgana, B.; Dadmun, M.D. Illumination alters the structure of gels formed from the model optoelectronic material P3HT. Polymer 2017, 108, 313-321, doi:10.1016/j.polymer.2016.11.056.
97. Nagai, M.; Huang, J.; Zhou, T.; Huang, W. Effect of Molecular Weight on Conformational Characteristics of Poly(3-hexyl thiophene). J. Polym. Sci. B Polym. Phys. 2017, 55, 1273-1277, doi:10.1002/polb.24389.
98. Pettersson, L.A.A.; Roman, L.S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487-496, doi:10.1063/1.370757.
99. Reference Air Mass 1.5 Spectra. Availabe online: https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed on 06 September 2020).
100. Mathewson, A.G.; Myers, H.P. Absolute Values of the Optical Constants of Some Pure Metals. Phys. Scr. 1971, 4, 291-292.
101. Rakić, A.D. Algorithm for the determination of intrinsic optical constants of metal films application to aluminum. Appl. Opt. 1995, 34, 4755-4767, doi:10.1364/AO.34.004755.
102. Dennler, G.; Forberich, K.; Scharber, M.C.; Brabec, C.J.; Tomiš, I.; Hingerl, K.; Fromherz, T. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells. J. Appl. Phys. 2007, 102, 054516, doi:10.1063/1.2777724.
103. Burkhard, G.F.; Hoke, E.T.; McGehee, M.D. Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells. Adv. Mater. 2010, 22, 3293-3297, doi:10.1002/adma.201000883.
104. Zhou, Y.; Shim, J.W.; Fuentes-Hernandez, C.; Sharma, A.; Knauer, K.A.; Giordano, A.J.; Marder, S.R.; Kippelen, B. Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure. Phys. Chem. Chem. Phys. 2012, 14, 12014-12021, doi:10.1039/c2cp42448g.
105. Bruggeman, V.D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636-664, doi:10.1002/andp.19354160705.
106. Wang, M.; Pan, N. Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R 2008, 63, 1-30, doi:10.1016/j.mser.2008.07.001.
107. Gillespie, D.T. A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 1976, 22, 403-434, doi:10.1016/0021-9991(76)90041-3.
108. Gillespie, D.T. Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 1977, 81, 2340-2361, doi:10.1021/j100540a008‚.
109. Miller, A.; Abrahams, E. Impurity Conduction at Low Concentrations. Phys. Rev. 1960, 120, 745-755, doi:10.1103/PhysRev.120.745.
110. Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W. Exciton Diffusion Measurements in Poly(3-hexylthiophene). Adv. Mater. 2008, 20, 3516-3520, doi:10.1002/adma.200800982.
111. Brabec, C.J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J.C.; Sariciftci, S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 2001, 340, 232-236, doi:10.1016/S0009-2614(01)00431-6.
112. Grancini, G.; Maiuri, M.; Fazzi, D.; Petrozza, A.; Egelhaaf, H.J.; Brida, D.; Cerullo, G.; Lanzani, G. Hot exciton dissociation in polymer solar cells. Nat. Mater. 2013, 12, 29-33, doi:10.1038/nmat3502.
113. Cook, S.; Furube, A.; Katoh, R. Analysis of the excited states of regioregular polythiophene P3HT. Energ Environ. Sci. 2008, 1, 294-299, doi:10.1039/b805643a.
114. Shen, Y.; Gupta, M.C. Investigation of Electrical Characteristics of P3HT:PCBM Organic Solar Cells. In Proceedings of Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3-8 June 2012; pp. 2770-2774.
115. Jahani, F.; Torabi, S.; Chiechi, R.C.; Koster, L.J.; Hummelen, J.C. Fullerene derivatives with increased dielectric constants. Chem. Commun. 2014, 50, 10645-10647, doi:10.1039/c4cc04366a.
116. Yoshida, K.; Oku, T.; Suzuki, A.; Akiyama, T.; Yamasaki, Y. Fabrication and Characterization of PCBM:P3HT Bulk Heterojunction Solar Cells Doped with Germanium Phthalocyanine or Germanium Naphthalocyanine. Mater. Sci. Appl. 2013, 4, 1-5, doi:10.4236/msa.2013.44A001.
117. Limpinsel, M.; Wagenpfahl, A.; Mingebach, M.; Deibel, C.; Dyakonov, V. Photocurrent in bulk heterojunction solar cells. Phys Rev B 2010, 81, 085203, doi:10.1103/PhysRevB.81.085203.
118. Lenes, M.; Koster, L.J.A.; Mihailetchi, V.D.; Blom, P.W.M. Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2006, 88, doi:10.1063/1.2211189.
119. Kim, M.S.; Kim, B.G.; Kim, J. Effective Variables to Control the Fill Factor of Organic Photovoltaic Cells. ACS Appl. Mater. Interfaces 2009, 1, 1264-1269, doi:10.1021/am900155y.
120. Shen, Y.; Li, K.; Majumdar, N.; Campbell, J.C.; Gupta, M.C. Bulk and contact resistance in P3HT:PCBM heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2314-2317, doi:10.1016/j.solmat.2011.03.046.
121. Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972-8982, doi:10.1039/c3cp51383a.
122. Xue, J.; Uchida, S.; Rand, B.P.; Forrest, S.R. 4.2% efficient organic photovoltaic cells with low series resistances. Appl. Phys. Lett. 2004, 84, 3013-3015, doi:10.1063/1.1713036.
123. Rau, U.; Grabitz, P.O.; Werner, J.H. Resistive limitations to spatially inhomogeneous electronic losses in solar cells. Appl. Phys. Lett. 2004, 85, 6010-6012, doi:10.1063/1.1835536.
124. Servaites, J.D.; Yeganeh, S.; Marks, T.J.; Ratner, M.A. Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance. Adv. Funct. Mater. 2010, 20, 97-104, doi:10.1002/adfm.200901107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71783-
dc.description.abstract本研究探討注入電荷密度對於高分子太陽能電池及光感測器光電性質的影響,並分析光感測器光電性質與負偏壓的關係。在模擬系統上選擇極具代表性之P3HT:PCBM系統,並結合易辛模型、光學轉換矩陣與動態蒙地卡羅方法三種模擬方法,針對太陽能電池之能量轉換效率以及光感測器之外部量子效率、暗電流密度以及載子傳遞時間等光電特性進行分析。在電荷注入密度對太陽能電池光電特性的影響上,我們發現陽極注入電洞在低外加電壓下皆被陽極提取,高外加電壓下少部分被陰極提取,所以電洞於陽極注入能障的降低使得JSC沒有明顯差異,VOC下降而FF上升,整體而言PCE呈下降趨勢。在光感測器上則發現當電洞注入能障極低時,在較厚的主動層下受陽極注入電洞停留數量較多的效應,外部量子效率下降、暗電流密度上升及電洞傳遞時間上升;在較薄主動層中則受大比率陰極注入電洞往陽極移動的影響,使外部量子效率及暗電流密度的上升。而在光感測器光電性質與負偏壓之變化趨勢的分析上,提升負偏壓使電洞(電子)往陽極(陰極)移動能力上升,在較厚的主動層中外部量子效率上升,載子傳遞時間下降。在較薄的主動層中受電極旁堆積電荷的吸引使其在高負偏壓下外部量子效率下降,載子傳遞時間上升並超越較厚的主動層。而隨厚度減少,外部量子效率深受光子吸收效率變化的影響,暗電流密度的變化則受陰極注入電洞密度的效應。本研究透過分析注入電荷密度與高分子太陽能電池及光感測器光電性質之間的關係,期許成果能提供實驗學者在研究上的參考依據,以促進此領域之發展。
zh_TW
dc.description.abstractIn this study, we investigate the effects of the injection charge density on the photoelectric properties of polymer solar cells and photodetectors, besides that, the relationship between the photoelectric properties of photodetectors and reverse bias are also discussed. The iconic P3HT:PCBM system is chosen as our simulation object, and three different simulation method are combined, which includes Ising model, optical transfer matrix and kinetic Monte Carlo method. In particular, we evaluate the power conversion efficiency in polymer solar cells, external quantum efficiency, dark current density and carrier transit time in polymer photodetectors. In the part of polymer solar cells, we observe that most of the holes injected at anode are extracted by anode under low external voltage, and a small portion of holes injected at anode can travel to cathode under high external voltage. Thus decrease the hole injection barrier at anode make the open circuit voltage decreased and the fill factor increased with the short circuit current unchanged, which results in a decrease in the power conversion efficiency. For photodetectors under extremely low hole injection barrier at anode, the retention of holes injected at anode cause the decrease in EQE, and increases in both dark current density and hole transit time at thicker active layer thickness. For thinner active layer thickness, the increase of EQE and dark current density is caused by a large portion of the holes injected at cathode can migrate from cathode to anode. The effects of reverse bias to the photoelectric properties of polymer photodetectors is also discussed. By increasing reverse bias, the ability of hole(electron) hopping to anode(cathode) is enhanced. Which cause an increase in EQE and a decrease in carrier transit time at thicker active layer thickness, However, the charge accumulation beside electrodes make the thinner active layer thickness shows a decrease in EQE and an increase in carrier transit time, which is even higher compared to the thicker one. By decreasing the active layer thickness, EQE is strongly affected by photon absorption, and the change in dark current density is related to the injection hole density at cathode. Through the investigation of effects of the injection charge density on the photoelectric properties of polymer solar cells and photodetectors, we hope the results will provide references to experimental scholars for future research and promote the development of this field.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:09:39Z (GMT). No. of bitstreams: 1
U0001-2010202014121600.pdf: 5421190 bytes, checksum: 99d02d3b443b7a0a5db129bc17f35f41 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vi
表目錄 x
第1章 前言 1
第2章 系統描述與模擬方法 10
2.1 主動層形態生成與分離區塊尺寸測定 12
2.2 光子吸收效率與光學轉換矩陣 15
2.3 動態蒙地卡羅模擬方法以及光電性質統計 17
第3章 結果與討論 25
3.1 有無考慮電荷注入對太陽能電池光電性質之影響 26
3.2 探討電洞於陽極以及陰極的注入能障 對太陽能電池光電性質之影響 32
3.3 光感測器在不同主動層厚度下其光電性質與負偏壓關係 41
3.4 改變電洞於陽極及陰極注入能障 對光感測器光電性質之影響 50
第4章 結論 56
參考文獻 57
附錄 68
dc.language.isozh-TW
dc.title探討注入電荷密度對於高分子太陽能電池及光感測器光電性質之影響
zh_TW
dc.titleEffects of the Injection Charge Density on the Photoelectric Properties of Polymer Solar Cells and Photodetectors
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志平(Chih-Ping Chen),郭錦龍(Chin-Lung Kuo)
dc.subject.keyword高分子太陽能電池,高分子光感測器,異質混摻形態,P3HT:PCBM,易辛模型,光學轉換矩陣,動態蒙地卡羅方法,注入電荷密度,注入能障,zh_TW
dc.subject.keywordpolymer solar cells,polymer photodetectors,P3HT:PCBM,bulk heterojunction,Ising model,optical transfer matrix,kinetic Monte Carlo method,injection charge density,injection barrier,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202004294
dc.rights.note有償授權
dc.date.accepted2020-10-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2010202014121600.pdf
  目前未授權公開取用
5.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved