Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71758
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorTing-Wei Linen
dc.contributor.author林庭瑋zh_TW
dc.date.accessioned2021-06-17T06:08:49Z-
dc.date.available2018-12-26
dc.date.copyright2018-12-26
dc.date.issued2018
dc.date.submitted2018-12-18
dc.identifier.citation[1] S. Tripathi, Y V B. V. Kumar, A. Prabhakar, S. S Joshi, A. Agrawal, “Passive blood plasma separation at the microscale: a review of design principles and microdevices, ” Journal of Micromechanics and Microengineering, Vol. 25, no. 8, Jul., 2015
[2] A. Lenshof, A. Ahmad-Tajudin, K. Jaras, A. M. Sward-Nilsson, L.
Åberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, “Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics, ” Anal. Chem., vol. 81, no. 15, pp. 6030-6037, Jul., 2009
[3] H. Jiang, X. Weng, C. H. Chon, X. Wu, D. Li, “A microfluidic chip for blood plasma separation using electro-osmotic flow control,” Journal of Micromechanics and Microengineering, vol. 21, no. 8, Jul., 2011.
[4] K. H. Chung, Y. H. Choi, J.-H. Yang, C. W. Park, W.-J. Kim, C. S. Ah, G. Y. Sung, “Magnetically-actuated blood filter unit attachable to pre-made biochips,” Lab Chip, vol. 12, no. 18, pp. 3272-3276, Aug., 2012
[5] C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, W. Menz, “Separation of blood in microchannel bends, ” Conf. Proc. IEEE Eng. Med. Biol. Soc., no. 4, pp. 2627-2630, Dec., 2004.
[6] K. Svanes, B. W. Zweifach, “Variations in Small Blood Vessel Hematocrits Produced in Hypothermic Rats by Micro-Occlusion, ” Microvascular Research, Vol. 1, no. 2, pp. 210-220, Oct., 1968.
[7] R. T. Yen, Y. C. Fung, “Effect of Velocity Distribution on Red Cell Distribution in Capillary Blood Vessels, ” Am. J. Physiol., Vol. 4, no. 2, pp. H251-H257, Aug., 1978.
[8] R. Ditchfield, and W. L. Olbricht, “Effects of Particle
Concentration on the Partitioning of Suspensions at Small Divergent Bifurcations,” J Biomech Eng., Vol. 118, no. 3, pp. 287-294, Aug., 1996.
[9] P. S. Dittrich, A. Manz, “Lab-on-a-chip: microfluidics in drug discovery, ” Nat. Rev. Drug Discovery, Vol. 5, no. 3, pp. 210-218, Mar., 2006.
[10] S. Yang, A. Undar, J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation, ” Lab Chip, Vol. 6, no. 7, pp. 871-880, Jul., 2006.
[11] S. Yang, A. Undar, J. D. Zahn, “Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures, ” ASAIO J., Vol. 52, no. 6, pp. 698-704, Nov.-Dec., 2006.
[12] A. I. Rodrı´guez-Villarreal, M. Arundell, M. Carmona, J. Samitier, “High flow rate microfluidic device for blood plasma separation using a range of temperatures, ” Lab Chip, vol. 10, no. 2, pp.211-219, Jan., 2010.
[13] M. Faivre, M. Abkarian, K. Bickraj, H. A. Stone, “Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma, ” Biorheology, Vol. 43, no. 2, pp. 147-159, Jan., 2006.
[14] M. Rafeie, J. Zhang, M. Asadnia, W. Li, M. E. Warkiani, “Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation, ” Lab Chip, vol. 16, no. 15, pp.2791-2802, Jun., 2016.
[15] C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, T. Tanaka, M. Makishima, “Microfluidic Sedimentation System for Separation of Plasma from Whole Blood, ” SENSORS, 2014 IEEE, Nov. 2014.
[16] J. H. Son, S. H. Lee, S. Hong, S. M. Park, J. Lee, A. M. Dickey, L. P. Lee, “Hemolysis-free blood plasma separation, ” Lab Chip, vol. 14, no. 13, pp.2287-2292, Jul., 2014.
[17] V. V. Tuchin, “Advanced Optical Flow Cytometry: Methods and Disease Diagnoses, ” Wiley-VCH, ISBN 978-3-527-40934-1, May., 2011.
[18] A Tzur, J. K. Moore, P. Jorgensen, H. M. Shapiro, M. W. Kirschner, “Optimizing Optical Flow Cytometry for Cell Volume-Based Sorting and Analysis, ” PLoS ONE, Vol. 6, no. 1, pp. 1-9, Jan., 2011.
[19] T.-W. Wu, C.-T. Lin, “The development of a microfluidic particle-analyzing device by impedance spectroscopy, ” Master Thesis, Graduate Institute of Electronics Engineering, Jul., 2017.
[20] J. Claudel, M. Nadi, O. Elmazria, D. Kourtiche, “Microfluidic biosensor for single cell high speed flow impedance spectroscopy, ” 8th International Conference on Sensing Technology, Sep., 2014.
[21] M. Nasir, G. Justin, L. C. Shriver-Lake, J. P. Golden, F. S. Ligler, “Hydrodynamic Focusing for Improved Sensitivity of an Impedance-Based Sensor for Cell Detection and Analysis, ” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct., 2010.
[22] K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing, ” Annu Rev Phys Chem., Vol. 58, no.1, pp. 267-297, Feb., 2007
[23] K. M. Mayer, J. H. Hafner, “Localized Surface Plasmon Resonance Sensors, ” Chem. Rev., Vol. 111, no. 6, pp. 3828-3857, Jun. 2011
[24] S. D. Schmidt, M. J. Mazzella, R. A. Nixon, P. M. Mathews, “Aβ measurement by enzyme-linked immunosorbent assay, ” Methods Mol Biol, Vol. 849, pp. 507-527, Jan., 2012
[25] F. R. G. Cruz, C. M. Magsipoc, F. E. B. Alinea, M. E. P. Baronia, M. M. Jumahadi, R. G. Gracia, W.-Y. Chung, “Application Specific Integrated Circuit (ASIC) for Ion Sensitive Field Effect Transistor (ISFET) L-Asparagine Biosensor,” IEEE Region 10 Conference, Nov., 2016.
[26] N. Miscourides, P. Georgiou, “A Linear Programmable-Gate ISFET Array Operating in Velocity Saturation,” IEEE Biomedical Circuits and Systems Conference, Oct., 2016.
[27] G.-J. Zhang, Y. Ning “Silicon nanowire biosensor and its applications in disease diagnostics: A review, ” Analytica Chimica Acta, Vol. 749, pp. 1-15, Oct., 2012
[28] Y. C. Kuo, C. K. Lee, C. T. Lin, “Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes, ” Biosensors and Bioelectronics, Vol. 103, pp. 130-137 Apr., 2018.
[29] T. L. Fabry, “Mechanism of erythrocyte aggregation and sedimentation, ” Blood., Vol. 70, No. 5, pp. 1572-1576, Nov., 1987.
[30] Š. Durdík, V. Tvarožek, S. Flickyngerová, D. Donoval, “Specific behaviour of the blood sedimentation processes examined by the electrochemical impedance microsensor,” Lékař a technika - Clinician and Technology, Vol. 43, no. 1, pp. 39-43, Jan., 2013.
[31] T.-H. Kim, H. Hwang, R. Gorkin, M. Madou, Y.-K. Cho, “Geometry effects on blood separation rate on a rotating disc,” Sensors and Actuators B: Chemical, Vol. 178, pp. 648-655, Mar., 2013.
[32] E. Ponder, “On Sedimentation And Rouleaux Formation‐I, ” Experimental Physiology, Vol. 15, no. 3, pp. 235-252, Oct., 1925.
[33] T. Izumi, I. Watanabe, Y. Yokoyama, “Activation of a gold electrode by electrochemical oxidation-reduction pretreatment in hydrochloric acid, ” J. Electroanal. Chem., Vol. 303, no. 1-2, pp. 151-160, Mar., 1991.
[34] M. S. Tunuli, ” Gold chloride electrodes as electrochemical sensors for liquid chromatography, ” Talanta, Vol. 35, no. 9, pp. 697-700, Sep., 1988.
[35] H. Angerstein-Kozlowska, B.E. Conway, A. Hamelin and L. Stoicoviciu, “Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane, ” J. Electroanal. Chem., Vol. 228. No. 1-2, pp. 429-453, Aug., 1987.
[36] I. F. Cheng, H. L. Yang, C. C. Chung H. C. Chang, “A rapid electrochemical biosensor based on an AC electrokinetics enhanced immuno-reaction, ” Analyst., Vol. 138, no. 16, pp. 4656-4662, Aug., 2013.
[37] F. L. Leite, C. C. Bueno, A. L. Da Róz, E. C. Ziemath, O. N. Oliveira, “Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy, ” Int J Mol Sci., Vol. 13, no. 10, pp. 12773-12756, Oct., 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71758-
dc.description.abstract血液分離是生物醫學研究或應用中大量使用的樣品製備步驟之一。為了因應Point-Of-Care Technology (POCT)的趨勢,已有許多不同的微流道系統在設計或開發階段,用以實現在POCT的裝置中達到微量的血液分離功能。這些微流道設計開發的主要挑戰,在於微流道中處理微量的全血是一大困境。為了克服此困難,本研究提出了一種運用雕刻機製作的微流道設計,實現血漿提取功能的裝置。在此裝置的設計中結合了全血沉降槽以及協助分離的過濾膜。裝置中的幾何效應對於沉降效果以及過濾效率的影響皆為本研究中評估的項目,最終達到僅需15微升的全血樣本,並且於15分鐘完成沉降過濾,提取出無細胞(cell-free)的血漿樣本。電化學阻抗分析被用於驗證本研究血漿提取的設計,於30分鐘的生物分子反應鍵結後,即可進行量測。電化學阻抗分析可以進一步使此設計更接近符合POTC需求的診斷系統。基於本研究的設計所開發的血液分離裝置,可以被用於未來的個人保健相關應用。zh_TW
dc.description.abstractBlood fractionation is an essential sample preparation step in in-vitro diagnosis applications. As a consequence, different microfluidic devices have been designed and developed to achieve blood fractionation functions, especially in Point-of-Care Technology (POCT). The major challenge of this development is difficulties to process small volume of whole blood in microscale devices. To conquer this challenge, we propose a plasma extraction device implemented by mechanically carving methods. In the proposed device, it combines a sedimentation slot and a filter membrane. The geometry effect of the sedimentaiton and filtration efficiency in the proposed device is experimentally evaluted. Only 15 microliter of whole blood sample is needed. Cell-free plasma sample can be extracted after 15 minutes of sedimentation and filtration. On the other hand, electrochemical impedance spectroscopy (EIS) is used to verify the plasma extract design. Further, it makes the device a step closer to a diagnosis system that should achieve POCT demand. 30 minutes is needed for hybridization, and the measurement can be conducted right after it. Based on our works, the developed blood-fractionation device can be used for future personal health care applications.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:08:49Z (GMT). No. of bitstreams: 1
ntu-107-R05945003-1.pdf: 3500438 bytes, checksum: 3c9d6ac7fb107c6557f664f82c915aff (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCertification of approval by oral committee...............................................................i
Acknowledgment..........................................................................................................ii
Abstract in Chinese.....................................................................................................iii
Abstract in English......................................................................................................iv
Contents.........................................................................................................................v
List of Figures.............................................................................................................vii
Chapter 1. Introduction...............................................................................................1
1.1 Structure of the Thesis.......................................................................................1
1.2 Overview of Cell Plasma Separation..................................................................2
1.3 Overview of Bio-molecular Sensing Technology.................................................7
1.4 Motivation of My Work...................................................................................10
Chapter 2. Theory.......................................................................................................12
2.1 Process of Blood Sedimentation.......................................................................12
2.2 Basis of Electrochemistry.................................................................................17
2.3 EIS and Equivalent Circuit Model...................................................................19
2.4 Measurement of EIS........................................................................................21
Chapter 3. Experiment...............................................................................................24
3.1 Device Design...................................................................................................24
3.2 Materials and Fabrication...............................................................................27
3.3 Experimental Setup and Process......................................................................30
3.4 EIS Measurement Parameters.........................................................................33
Chapter 4. Results and Discussion............................................................................35
4.1 Simulation of Sedimentation Slot.....................................................................35
4.1.1 Simulation Parameters......................................................................................35
4.1.2 Base Effect........................................................................................................37
4.1.3 Slope Effect......................................................................................................39
4.2 Validation of Sedimentation.............................................................................40
4.3 Validation of Filtration....................................................................................42
4.4 EIS Measurement............................................................................................45
4.4.1 Calibration Curve and Sensing Limitations......................................................45
4.4.2 Spiked Plasma and Diluted Plasma..................................................................46
4.4.3 Checkpoints: the Impedance of each Modification Step..................................48
4.5 Full Integration.............................................................................................50
Chapter 5. Conclusion................................................................................................51
References...................................................................................................................52
dc.language.isoen
dc.subject血液分離zh_TW
dc.subjectPOTCzh_TW
dc.subject血漿提取zh_TW
dc.subject血液沉降zh_TW
dc.subject過濾膜zh_TW
dc.subject電化學阻抗分析zh_TW
dc.subjectfilter membranesen
dc.subjectblood fractionationen
dc.subjectPOCTen
dc.subjectelectrochemical impedance spectroscopy (EIS)en
dc.subjectplasma extractionen
dc.subjectblood sedimentationen
dc.title應用於個人化生物分子檢測之血液分離技術研發zh_TW
dc.titleA Design of Plasma Extraction for Bio-molecular Diagnosis in Personalized Applicationsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃念祖(Nien-Tsu Huang),許聿翔(Yu-Hsiang Hsu)
dc.subject.keyword血液分離,POTC,血漿提取,血液沉降,過濾膜,電化學阻抗分析,zh_TW
dc.subject.keywordblood fractionation,POCT,plasma extraction,blood sedimentation,filter membranes,electrochemical impedance spectroscopy (EIS),en
dc.relation.page55
dc.identifier.doi10.6342/NTU201804357
dc.rights.note有償授權
dc.date.accepted2018-12-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved