Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71651
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉
dc.contributor.authorYi-Lun Leeen
dc.contributor.author李沂倫zh_TW
dc.date.accessioned2021-06-17T06:05:36Z-
dc.date.available2020-01-21
dc.date.copyright2019-01-21
dc.date.issued2018
dc.date.submitted2019-01-17
dc.identifier.citationAbdull Razis AF, Noor NM. 2013. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pacific journal of cancer prevention : APJCP 14(3):1565-1570.
Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL. 2011. Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome research 21(4):610-617.
Beaumont MA, Balding DJ. 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular ecology 13(4):969-980.
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. 2015. The Arabidopsis information resource: Making and mining the 'gold standard' annotated reference plant genome. Genesis (New York, NY : 2000) 53(8):474-485.
Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Rhodes M, Reich DE, Hirschhorn JN. 2004. Genetic signatures of strong recent positive selection at the lactase gene. American journal of human genetics 74(6):1111-1120.
Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, Blott S, SanCristobal M. 2010. Detecting Selection in Population Trees: The Lewontin and Krakauer Test Extended. Genetics 186(1):241.
Booij R, Struik PC. 1990. Effects of temperature on leaf and curd initiation in relation to juvenility of cauliflower. Scientia Horticulturae 44(3):201-214.
Bouche F, Lobet G, Tocquin P, Perilleux C. 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic acids research 44(D1):D1167-1171.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics (Oxford, England) 23(19):2633-2635.
Buck PA. 1956. Origin and taxonomy of broccoli. Economic Botany 10(3):250-253.
Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps. Genome research 20(3):393-402.
Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN. 1999. The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development (Cambridge, England) 126(12):2715-2726.
Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y and others. 2016. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nature genetics 48(10):1218-1224.
Clark SE, Running MP, Meyerowitz EM. 1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development (Cambridge, England) 119(2):397-418.
Cleveland WS, Devlin SJ. 1988. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association 83(403):596-610.
Cooper L, Meier A, Laporte M-A, Elser JL, Mungall C, Sinn BT, Cavaliere D, Carbon S, Dunn NA, Smith B and others. 2018. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics. Nucleic acids research 46(D1):D1168-D1180.
Crisp P. 1982. The use of an evolutionary scheme for cauliflowers in the screening of genetic resources. Euphytica 31(3):725-734.
Denay G, Chahtane H, Tichtinsky G, Parcy F. 2017. A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology 35:15-22.
DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. 2006. The CLAVATA1‐related BAM1, BAM2 and BAM3 receptor kinase‐like proteins are required for meristem function in Arabidopsis. The Plant Journal 45(1):1-16.
Dixon GR. 2006. Vegetable Brassicas and Related Crucifers.
Duclos DV, Bjorkman T. 2008. Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. Journal of experimental botany 59(2):421-433.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5):1792-1797.
Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B and others. 2017. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature genetics 49:1089.
Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B. 2013. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193(3):929-941.
Fay JC, Wu CI. 2000. Hitchhiking under positive Darwinian selection. Genetics 155(3):1405-1413.
Felsenstein J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164-166.
Francis RM. 2016. pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17(1):27-32.
Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernandez-Calvin B, Salinas J, Martinez-Zapater JM. 2002. AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems. Plant physiology 128(2):418-427.
Frerichs A, Thoma R, Abdallah AT, Frommolt P, Werr W, Chandler JW. 2016. The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem. BMC Genomics 17:855.
Frichot E, François O. 2015. LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution 6(8):925-929.
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. 2014. Fast and Efficient Estimation of Individual Ancestry Coefficients. Genetics 196(4):973-983.
Fujime Y, Okuda N. THE PHYSIOLOGY OF FLOWERING IN BRASSICAS, ESPECIALLY ABOUT CAULIFLOWER AND BROCCOLI; 1996. International Society for Horticultural Science (ISHS), Leuven, Belgium. p 247-254.
Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C. 2007. High-density Brassica oleracea linkage map: identification of useful new linkages. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 115(2):277-287.
Gautier M, Klassmann A, Vitalis R. 2017. rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour 17(1):78-90.
Girgis HZ. 2015. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics 16:227.
Godin C, Azpeitia E, Farcot E. 2015. An introduction to modelling flower primordium initiation.
Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP and others. 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications 7:13390.
Gray AR, Crisp P. 1977. Breeding system, taxonomy, and breeding strategy in cauliflower, Brassica oleracea var. botrytis (L.). Euphytica 26(2):369-375.
Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, Griesemer D, Karlsson EK, Wong SH and others. 2013. Identifying recent adaptations in large-scale genomic data. Cell 152(4):703-713.
Grossman SR, Shlyakhter I, Karlsson EK, Byrne EH, Morales S, Frieden G, Hostetter E, Angelino E, Garber M, Zuk O and others. 2010. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science (New York, NY) 327(5967):883-886.
Gutiérrez-Gil B, Esteban-Blanco C, Wiener P, Chitneedi PK, Suarez-Vega A, Arranz J-J. 2017. High-resolution analysis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds. Genetics, Selection, Evolution : GSE 49:81.
Hasan Y, Briggs W, Matschegewski C, Ordon F, Stutzel H, Zetzsche H, Groen S, Uptmoor R. 2016. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. TAG Theoretical and applied genetics Theoretische und angewandte Genetik 129(7):1273-1288.
Hohenlohe PA, Phillips PC, Cresko WA. 2010. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS. International journal of plant sciences 171(9):1059-1071.
Kempin SA, Savidge B, Yanofsky MF. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science (New York, NY) 267(5197):522-525.
Khvorykh G. 2018. inzilico/imputeqc v1.0.0 https://github.com/inzilico/imputeqc
GitHub repository
Labate JA, Robertson LD, Baldo AM, Björkman T. 2006. Inflorescence Identity Gene Alleles Are Poor Predictors of Inflorescence Type in Broccoli and Cauliflower. Journal of the American Society for Horticultural Science 131(5):667-673.
Lagercrantz U, Lydiate DJ. 1996. Comparative genome mapping in Brassica. Genetics 144(4):1903-1910.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9(4):357-359.
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of experimental botany 61(9):2247-2254.
Lee T-H, Guo H, Wang X, Kim C, Paterson AH. 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15(1):162.
Lewontin RC, Krakauer J. 1973. DISTRIBUTION OF GENE FREQUENCY AS A TEST OF THE THEORY OF THE SELECTIVE NEUTRALITY OF POLYMORPHISMS. Genetics 74(1):175.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) 25(16):2078-2079.
Li L-F, Li Y-L, Jia Y, Caicedo AL, Olsen KM. 2017. Signatures of adaptation in the weedy rice genome. Nature genetics 49:811.
Liu C, Thong Z, Yu H. 2009. Coming into bloom: the specification of floral meristems. Development (Cambridge, England) 136(20):3379-3391.
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S and others. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5:3930.
Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. 2015. Properties of different selection signature statistics and a new strategy for combining them. Heredity 115(5):426-436.
Maggioni L, von Bothmer R, Poulsen G, Lipman E. 2018. Domestication, diversity and use of Brassica oleracea L., based on ancient Greek and Latin texts. Genetic Resources and Crop Evolution 65(1):137-159.
Maier AT, Stehling-Sun S, Wollmann H, Demar M, Hong RL, Haubeiss S, Weigel D, Lohmann JU. 2009. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development (Cambridge, England) 136(10):1613-1620.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and others. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20(9):1297-1303.
Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76(10):5269-5273.
Nagaharu U. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany 7:389-452.
Norton HL, Kittles RA, Parra E, McKeigue P, Mao X, Cheng K, Canfield VA, Bradley DG, McEvoy B, Shriver MD. 2007. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Molecular biology and evolution 24(3):710-722.
Pérez-Ruiz Rigoberto V, García-Ponce B, Marsch-Martínez N, Ugartechea-Chirino Y, Villajuana-Bonequi M, de Folter S, Azpeitia E, Dávila-Velderrain J, Cruz-Sánchez D, Garay-Arroyo A and others. 2015. XAANTAL2 (AGL14) Is an Important Component of the Complex Gene Regulatory Network that Underlies Arabidopsis Shoot Apical Meristem Transitions. Molecular Plant 8(5):796-813.
Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL and others. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology 15(6):R77.
Payne T, Johnson SD, Koltunow AM. 2004. KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development (Cambridge, England) 131(15):3737-3749.
Pidkowich MS, Klenz JE, Haughn GW. 1999. The making of a flower: control of floral meristem identity in Arabidopsis. Trends in plant science 4(2):64-70.
Prunet N, Yang W, Das P, Meyerowitz EM, Jack TP. 2017. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proceedings of the National Academy of Sciences 114(27):7166-7171.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ and others. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 81(3):559-575.
Purugganan MD, Boyles AL, Suddith JI. 2000. Variation and Selection at the CAULIFLOWER Floral Homeotic Gene Accompanying the Evolution of Domesticated Brassica oleracea. Genetics 155(2):855-862.
R Core Team 2013. R: A language and environment for statistical
computing. Version 3.4: R Foundation for Statistical Computing.
Saddic, L. A., Huvermann, B., Bezhani, S., Su, Y., Winter, C. M., Kwon, C. S., . . . Wagner, D. (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development, 133(9), 1673-1682. doi:10.1242/dev.02331
Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ and others. 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832.
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R and others. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913-918.
Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes & development 13(9):1079-1088.
Scheet P, Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. American journal of human genetics 78(4):629-644.
Schlamp F, Made J, Stambler R, Chesebrough L, Boyko AR, Messer PW. 2015. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Molecular ecology 25(1):342-356.
Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics (Oxford, England) 27(4):592-593.
Smith L, King G. 2000. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the Cauliflower.
Smyth DR. 1995. Flower Development: Origin of the cauliflower. Current Biology 5(4):361-363.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585.
Tang K, Thornton KR, Stoneking M. 2007. A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome. PLOS Biology 5(7):e171.
Tange O. 2011. GNU Parallel - The Command-Line Power Tool. Version 20141022: The USENIX Magazine.
van Dijk ADJ, Molenaar J. 2017. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time. PeerJ 5:e3197.
Vitti JJ, Grossman SR, Sabeti PC. 2013. Detecting natural selection in genomic data. Annual review of genetics 47:97-120.
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. 2005. Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology 15(17):1566-1571.
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8(1):28-36.
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics (Oxford, England) 28(24):3326-3328.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71651-
dc.description.abstract青花菜(Brassica oleracea var. italica) 與花椰菜(B. oleracea var. botrytis)為世界重要蔬菜,兩者為同一個物種的不同變種。儘管兩者外觀相近皆為花球,但青花菜的花球大多由花苞構成,花椰菜則是未分化的花序分生組織。而兩者分化差異很可能是人為選拔造成,因此可以透由比較並追蹤選拔訊號,找出造成兩者分化差異的候選區域。本文針對National Center for Biotechnology Information (NCBI) 上一組全基因體定序資料,包含了20個花椰菜與23個青花菜,利用核苷酸多樣性比值以及hapFLK尋找族群內缺乏多樣性或者族群間分化顯著的區域,並且個別找到了88以及65個候選區域。而為了縮減候選區域數量,本文亦用多樣性的比值以及hapFLK分析了另一個來自台灣的族群以對上述的候選區域提供支持,包含53個青花菜與93個花椰菜自交系。最後多樣性的比值以及hapFLK分別找出了33個與16個在兩個資料組都有的候選區域。在這些區域裡,我們發現了至少8個與花序發展相關的候選基因,例如AINTEGUMENTA-like 6、APETALA1、BRANCHED 1、FILAMENTOUS FLOWER、LATE MERISTEM IDENTITY1、MONOPTEROS、 REPRODUCTIVE MERISTEM 1APETALA1與SUPPRESSOR OF OVEREXPRESSION OF CO 1;也發現了至少十個與側芽發展及分生組織相關的基因,例如BLADE ON PETIOLE 與JAGGED LATERAL ORGANS。本文提供了49個與青花菜、花椰菜分化相關的有利候選區域及其候選基因,更深入了解甘藍類的演化以及馴化;而這些區域也對花椰菜與花椰菜的分子育種有一定的幫助。zh_TW
dc.description.abstractBroccoli (Brassica oleracea var. italica) and cauliflower (B. oleracea var. botrytis) belong to the same species but are recognized as different varieties. Albeit their edible heads have similar shapes, they are actually different anatomic structures, with cauliflower having clusters of inflorescence meristem while broccoli having clusters of floral buds for broccoli. The differentiation might be an outcome of artificial selection, which may leave signatures of selective sweeps at the genomic level. To uncover the genetic regions underlying the differentiation between broccoli and cauliflower, the resequencing population of 23 broccoli and 20 cauliflowers retrieved from National Center for Biotechnology Information were used to detect selective sweeps, by searching for regions with low nucleotide diversity in one population or significant divergence between populations using ratio of nucleotide diversity and hapFLK, respectively. Seventy-five and 65 candidate regions were discovered by ratio of nucleotide diversity and hapFLK, respectively. To narrow down candidate regions, the population with 53 broccoli and 93 cauliflowers inbred lines bred in Taiwan were also scanned for selective sweeps. Consequently, 33 and 16 regions were detected by ratio of nucleotide diversity and hapFLK, respectively. Within these regions, at least 8 genes were involved in the inflorescence meristem development: AINTEGUMENTA-like 6, APETALA1, BRANCHED 1, FILAMENTOUS FLOWER, LATE MERISTEM IDENTITY1, MONOPTEROS, REPRODUCTIVE MERISTEM 1, and SUPPRESSOR OF OVEREXPRESSION OF CO 1, and at least 10 genes were related to lateral organ and meristem development, e.g. BLADE ON PETIOLE and JAGGED LATERAL ORGANS. Our results reported 49 promising candidate genomic regions associated with the morphological differentiation between broccoli and cauliflower. These results could not only elucidate the evolutionary and domestication history of B. oleracea, but also provide candidate regions for crossing between broccoli and cauliflower in molecular breeding.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:05:36Z (GMT). No. of bitstreams: 1
ntu-107-R05621110-1.pdf: 2899563 bytes, checksum: acafdd9ccc968954f34d3ffe5e646a44 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsPreface 1
Chapter 1. Literature Review 5
1.1. Broccoli and cauliflower 5
1.2. Origin and domestication of Brassica oleracea 6
1.3. Molecular mechanism for inflorescence meristem development 7
1.4. Differentiation between cauliflower and broccoli 9
1.5. Detection of natural selection 11
Chapter 2. Plant Materials and Methods 15
2.1. Plant materials 15
2.2. Sequencing, mapping, and variants calling 15
2.3. Genetic diversity analysis 17
2.4. Linkage disequilibrium 19
2.5. Detection of selection signature 19
2.5.1. Ratio of nucleotide diversity 20
2.5.2. Cross-population extended haplotype homozygosity 21
2.5.3. HapFLK 23
2.6. Identification of candidate gene 25
Chapter 3. Results 26
3.1. Genotype analysis of the two populations 26
3.2. Genetic diversity within the CH population 28
3.3. Divergence of cauliflowers and broccoli in the two populations 33
3.4. Linkage disequilibrium analysis 33
3.5. Detection for selective sweeps 36
3.5.1. Candidate SNPs identified by ratio of nucleotide diversity 36
3.5.2. Candidate SNPs found by XP-EHH 41
3.5.3. Candidate SNPs discovered by HapFLK 43
3.6. Identification of candidate regions and genes 48
Chapter 4. Discussion 54
4.1. Genetic differentiation among subpopulations in the two populations. 54
4.2. Strategy and interpretation for the detection of selection 55
4.3. Selected regions identified by ratio of nucleotide diversity 57
4.4. Selected regions identified by hapFLK 60
4.5. XP-EHH, not a good scan for these populations 63
4.6. The possibility of false negatives 64
4.7. Conclusion 66
Chapter 5. Reference 68
Chapter 6. Appendix 76
dc.language.isoen
dc.subject青花菜zh_TW
dc.subject花椰菜zh_TW
dc.subject花球zh_TW
dc.subject選拔橫掃zh_TW
dc.subject花序分生組織zh_TW
dc.subjectcurden
dc.subjectcaulifloweren
dc.subjectbroccolien
dc.subjectinflorescence meristemen
dc.subjectselective sweepsen
dc.title與青花菜及花椰菜形態歧異相關之候選基因體區域zh_TW
dc.titleCandidate Genomic Regions Associated with Morphological Divergence between Broccoli (Brassica oleracea var. italica) and Cauliflower (B. oleracea var. botrytis)en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李承叡,林耀正,許育嘉,羅筱鳳
dc.subject.keyword青花菜,花椰菜,花球,選拔橫掃,花序分生組織,zh_TW
dc.subject.keywordbroccoli,cauliflower,curd,selective sweeps,inflorescence meristem,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201900115
dc.rights.note有償授權
dc.date.accepted2019-01-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved