請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7163
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾于恒 | |
dc.contributor.author | Ting-En Lin | en |
dc.contributor.author | 林廷恩 | zh_TW |
dc.date.accessioned | 2021-05-19T17:39:56Z | - |
dc.date.available | 2022-06-09 | |
dc.date.available | 2021-05-19T17:39:56Z | - |
dc.date.copyright | 2020-06-09 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-03-28 | |
dc.identifier.citation | Alexander, M. A., Vimont, D. J., Chang, P., Scott, J. D. (2010). The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments. Journal of Climate, 23(11), 2885-2901. doi:10.1175/2010jcli3205.1 Anderson, B. T. (2003). Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. Journal of Geophysical Research, 108(D23). doi:10.1029/2003jd003805 Anderson, B. T. (2004). Investigation of a large-scale mode of ocean–atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies. 17(20), 4089-4098. Anderson, B. T. (2007). On the Joint Role of Subtropical Atmospheric Variability and Equatorial Subsurface Heat Content Anomalies in Initiating the Onset of ENSO Events. Journal of Climate, 20(8), 1593-1599. doi:10.1175/jcli4075.1 Anderson, B. T., Perez, R. C. (2015). ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Climate Dynamics, 45(9-10), 2309-2327. doi:10.1007/s00382-015-2472-x Anderson, B. T., Perez, R. C., Karspeck, A. (2013). Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophysical Research Letters, 40(6), 1212-1216. doi:10.1002/grl.50200 Ashok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112(C11). doi:10.1029/2006jc003798 Ashok, K., Tam, C. Y., Lee, W. J. (2009). ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophysical Research Letters, 36(12). doi:10.1029/2009gl038847 Balmaseda, M. A., Vidard, A., Anderson, D. L. T. (2008). The ECMWF Ocean Analysis System: ORA-S3. Monthly Weather Review, 136(8), 3018-3034. doi:10.1175/2008mwr2433.1 Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. MONTHLY WEATHER REYIEW. doi:UDC 551.513:551.508.338:551.465.6(265)(267) Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., Bladé, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12(7), 1990-2009. Bunge, L., Clarke, A. J. (2014). On the Warm Water Volume and Its Changing Relationship with ENSO. Journal of Physical Oceanography, 44(5), 1372-1385. doi:10.1175/jpo-d-13-062.1 Chen, H.-C., Sui, C.-H., Tseng, Y.-H., Huang, B. J. J. o. C. (2015). An analysis of the linkage of Pacific subtropical cells with the recharge–discharge processes in ENSO evolution. 28(9), 3786-3805. Chen, H. C., Tseng, Y. H., Hu, Z. Z., Ding, R. (2020). Enhancing the ENSO Predictability beyond the Spring Barrier. Sci Rep, 10(1), 984. doi:10.1038/s41598-020-57853-7 Clarke, A. J., Van Gorder, S., Colantuono, G. (2007). Wind Stress Curl and ENSO Discharge/Recharge in the Equatorial Pacific. Journal of Physical Oceanography, 37(4), 1077-1091. doi:10.1175/jpo3035.1 Deser, C., Capotondi, A., Saravanan, R., Phillips, A. S. (2006). Tropical Pacific and Atlantic climate variability in CCSM3. Journal of Climate, 19(11), 2451-2481. Di Lorenzo, E., Cobb, K. M., Furtado, J. C., Schneider, N., Anderson, B. T., Bracco, A., . . . Vimont, D. J. (2010). Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nature Geoscience, 3(11), 762-765. doi:10.1038/ngeo984 Ding, R., Li, J., Tseng, Y.-h. (2014). The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dynamics, 44(7-8), 2017-2034. doi:10.1007/s00382-014-2303-5 Ding, R., Li, J., Tseng, Y.-h., Sun, C., Guo, Y. (2015). The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. Journal of Geophysical Research: Atmospheres, 120(1), 27-45. doi:10.1002/2014jd022221 Ding, R., Tseng, Y. h., Li, J., Sun, C., Xie, F., Hou, Z. (2019). Relative contributions of North and South Pacific sea surface temperature anomalies to ENSO. Journal of Geophysical Research: Atmospheres. doi:10.1029/2018jd030181 Gill, A. (1982). Atmosphere–Ocean Dynamics. Academic Press, 662 pp. Hasegawa, T., Hanawa, K. J. J. o. p. o. (2003). Heat content variability related to ENSO events in the Pacific. 33(2), 407-421. Hu, Z. Z., Kumar, A., Zhu, J., Huang, B., Tseng, Y. H., Wang, X. (2017). On the Shortening of the Lead Time of Ocean Warm Water Volume to ENSO SST Since 2000. Sci Rep, 7(1), 4294. doi:10.1038/s41598-017-04566-z Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., . . . Marshall, S. (2013). The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American meteorological Society, 94(9), 1339-1360. doi:10.1175/bams-d-12-00121.1 Jin, F.-F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54(7), 811-829. Jin, F.-F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. Journal of the Atmospheric Sciences, 54(7), 830-847. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., . . . Woollen, J. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437-472. Kao, H.-Y., Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22(3), 615-632. doi:10.1175/2008jcli2309.1 Kessler, W. S. (1990). Observations of long Rossby waves in the northern tropical Pacific. Journal of Geophysical Research, 95(C4). doi:10.1029/JC095iC04p05183 Kim, S. T., Yu, J.-Y., Kumar, A., Wang, H. (2012). Examination of the Two Types of ENSO in the NCEP CFS Model and Its Extratropical Associations. Monthly Weather Review, 140(6), 1908-1923. doi:10.1175/mwr-d-11-00300.1 Kug, J.-S., Jin, F.-F., An, S.-I. (2009). Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 22(6), 1499-1515. doi:10.1175/2008jcli2624.1 Linkin, M. E., Nigam, S. (2008). The North Pacific Oscillation–West Pacific Teleconnection Pattern: Mature-Phase Structure and Winter Impacts. Journal of Climate, 21(9), 1979-1997. doi:10.1175/2007jcli2048.1 Meinen, C. S., McPhaden, M. J. (2000). Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Journal of Climate, 13(20), 3551-3559. Meinen, C. S., McPhaden, M. J. (2001). Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. Journal of Physical Oceanography, 31(5), 1324-1345. Rayner, N., Brohan, P., Parker, D., Folland, C., Kennedy, J., Vanicek, M., . . . Tett, S. (2006). Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. Journal of Climate, 19(3), 446-469. Rogers, J. C. (1981). The north Pacific oscillation. Journal of Climatology, 1(1), 39-57. Tseng, Y.-H., Ding, R., Huang, X.-m. (2017). The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environmental Research Letters, 12(5). doi:10.1088/1748-9326/aa67c3 Vimont, D. J., Alexander, M., Fontaine, A. (2009). Midlatitude Excitation of Tropical Variability in the Pacific: The Role of Thermodynamic Coupling and Seasonality. Journal of Climate, 22(3), 518-534. doi:10.1175/2008jcli2220.1 Vimont, D. J., Battisti, D. S., Hirst, A. C. (2001). Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophysical Research Letters, 28(20), 3923-3926. doi:10.1029/2001gl013435 Vimont, D. J., Wallace, J. M., Battisti, D. S. (2003). The seasonal footprinting mechanism in the Pacific: Implications for ENSO. Journal of Climate, 16(16), 2668-2675. doi:Doi 10.1175/1520-0442(2003)016<2668:Tsfmit>2.0.Co;2 White, W. B., Tourre, Y. M., Barlow, M., Dettinger, M. (2003). A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin. Journal of Geophysical Research, 108(C3). doi:10.1029/2002jc001490 Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., Jin, F. F. (2009). El Nino in a changing climate. Nature, 461(7263), 511-514. doi:10.1038/nature08316 You, Y., Furtado, J. C. (2017). The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophysical Research Letters, 44(14), 7438-7446. doi:10.1002/2017gl073475 Yu, J.-Y., Kim, S. T. (2011). Relationships between Extratropical Sea Level Pressure Variations and the Central Pacific and Eastern Pacific Types of ENSO. Journal of Climate, 24(3), 708-720. doi:10.1175/2010jcli3688.1 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7163 | - |
dc.description.abstract | 先前的研究指出考慮熱帶地區次表層海洋熱含量的暖水體 (例如:Warm water volume,簡稱WWV) 以及北太平洋中緯度地區海平面氣壓變異所引起的海溫模態 (例如:Victoria mode,簡稱VM) 有利於發展聖嬰/反聖嬰事件 (El Niño Southern Oscillation,簡稱ENSO)。此研究利用觀測資料與數值模擬來探討結合北太平洋海溫變異與熱帶次表層熱含量對ENSO演變的影響。首先透過經驗正交函數的分析來檢驗次表層熱含量的氣候變異,其中第一與第二個模態為ENSO模態與它的相位轉換過程 (WWV)。交互相關分析指出這兩者氣候模態之間有著中度相關且約七個月的相位轉換,並且WWV的形成是透過中部赤道太平洋地區附近的風應力旋度所引起的經向副熱帶海洋環流(Subtropical cells)的變異,進而將水體注入至赤道地區逐漸形成WWV。透過區分南北側近赤道區域的風應力旋度所造成經向水體運輸的分析,指出南北側的信風(Trade winds)距平將會對赤道地區注入熱含量,讓WWV更有利於發展ENSO。這樣的結果能夠確認在ENSO的週期下改變熱帶地區熱含量的變異,不僅是由近赤道地區的海洋與大氣耦合動力下的貢獻,還有來自副熱帶地區信風變異的影響。 VM 是北太平洋中緯度海溫第二個氣候模態,並且有著典型的海溫足跡來影響熱帶地區的氣候動力。合成分析指出結合正(負)相位的VM與正(負)相位的WWV事件將有利於聖嬰(反聖嬰)事件的形成。主要的動力機制是VM的海溫變異能改變赤道地區的大氣環流且造成西風距平的生成,這樣的風場變異將能產生海洋凱爾文波(Kelvin waves),並且將原先赤道地區的WWV向東傳遞來觸發ENSO事件。 本研究最後透過地球系統模式來驗證VM的貢獻對於WWV的改變所引起ENSO的發展。當VM與WWV指標皆是同個相位時,模式的表現將傾向於隨後幾個月發生ENSO事件。敏感度測試實驗指出如果持續地添加VM海溫變異至模式中,VM與Niño3.4指標之間的關聯性將會提高,指出ENSO事件的發生裡VM是其中可控制的氣候因素。這樣的結果能夠確認VM與WWV是不同的氣候變異,並且皆是ENSO重要的預測指標。儘管最近的研究指出WWV在2000年以後不再是一個良好預測ENSO的指標,但是2015-16年的聖嬰事件能夠驗證結合VM與WWV的氣候變異能發展ENSO事件,並且如果考慮VM的變異能夠讓WWV更具有ENSO的可預報性。 | zh_TW |
dc.description.abstract | Previous studies suggested that both tropical subsurface heat content (i.e., Warm Water Volume, WWV) and the North Pacific sea surface temperature pattern (specifically Victoria Mode, VM), linked to the North Pacific sea level pressures, may tend to develop El Niño Southern Oscillation (ENSO) events. Here, we study the linkages between the VM and tropical ocean heat content within the ENSO evolution using the observation and model experiments. The first two dominant Empirical Orthogonal Function (EOF) modes of tropical ocean heat content represent the typical ENSO variation and its phase transition. Cross-correlation analysis indicates a moderate correlation of a 7-month phase lag between these two modes. The formation of WWV is directly caused by the meridional transport of Subtropical Cell driven by the wind stress curl. Separation of Sverdrup transport induced by the off-equatorial wind stress curl between northern and southern regions suggests that anomalous trade winds from both hemispheres may provide an additional charging of the subsurface heat content, leading to the WWV be conducive to develop the ENSO. These results confirm that not only coupled air-sea interactions near the tropics but also anomalous trade winds from the subtropics can modulate tropical subsurface heat content during the ENSO cycle. The VM is defined as the second mode of sea surface temperature in the North Pacific, typical footprinting of the extratropical forcing on the tropical dynamics. Composite analysis confirms that the joint impacts of positive (negative) VM and positive (negative) WWV favor the development of El Niño (La Niña) events. The VM may favor the occurrence of anomalous westerlies in the tropics that drives oceanic Kelvin waves, causing the eastward propagation of WWV to trigger the ENSO events. The main contribution of VM on the WWV change leading to the ENSO development is verified using the Community Earth System Model. When the VM and WWV indices have the same sign, the model tends to develop ENSO events a few months later. An additional sensitivity experiment shows that the correlation between VM and Niño3.4 can be increased if the VM pattern is consistently imposed on the model, suggesting the controlling role of VM on the ENSO events. These results confirm the distinct roles of VM and WWV as the critical predictors of ENSO variability. Finally, although recent studies indicate that WWV is not a good predictor of ENSO events after 2000, the El Niño event in 2015-16 can verify that the joint impacts of VM and WWV variability on ENSO evolution, making the WWV more predictable about the ENSO event in consideration of the VM variability. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:56Z (GMT). No. of bitstreams: 1 ntu-109-R06241102-1.pdf: 15673071 bytes, checksum: be4c195573d4f0610d2bd29872ee6fba (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 中文摘要 i ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Data and Method 5 2.1 Observation data 5 2.2 Analysis methods 5 2.3 Numerical models 6 Chapter 3 Result 8 3.1 Climate modes of tropical Pacific 8 3.2 Sverdrup transport related to tropical ocean heat content variability 9 3.3 The wind stress curl related to tropical ocean heat content variability 11 3.4 The evolution of subsurface heat content 12 3.4.1 Tilt mode 12 3.4.2 Basin mode 14 Chapter 4 The link between the VM and tropical WWV 17 4.1 The relationship between the VM and tropical climate variability 17 4.2 The composite analysis of different states of VM and WWV events 17 Chapter 5 The result of numerical models 19 5.1 Climate modes of tropical Pacific variability 19 5.2 The Victoria mode and its relationship with tropical climate modes 19 5.3 Model experiment design 20 5.4 The relative contribution of VM and WWV variability on ENSO 21 5.5 The composite analysis of VM and WWV variability 22 Chapter 6 Conclusion 24 REFERENCE 26 FIGURE 30 TABLE 57 | |
dc.language.iso | en | |
dc.title | 結合北太平洋海溫模態與熱帶地區海洋熱含量探討ENSO的演變 | zh_TW |
dc.title | The Linkages Between Victoria Mode and Tropical Ocean Heat Content on ENSO Evolution | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳世楠,隋中興,黃彥婷 | |
dc.subject.keyword | 聖嬰/反聖嬰現象,北太平洋海溫模態,暖水體,海洋熱含量,風應力旋度, | zh_TW |
dc.subject.keyword | El Nino Southern Oscillation,Victoria mode,warm water volume,ocean heat content,wind stress curl, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU202000712 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-03-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf | 15.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。