Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71632
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁偉立(Wei-Li Liang)
dc.contributor.authorYi-Hung Chenen
dc.contributor.author陳奕宏zh_TW
dc.date.accessioned2021-06-17T06:05:05Z-
dc.date.available2019-01-24
dc.date.copyright2019-01-24
dc.date.issued2019
dc.date.submitted2019-01-21
dc.identifier.citationBoyer, J. S. (1967). Leaf Water Potentials Measured with a Pressure Chamber. Plant Physiology, 42(1), 133-137.
Chiou, C. R., Chen, T. H.,Lin, Y. J.,Yang, Y. J.,Lin, S. D. (2009). Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. Quarterly Journal of Chinese forest,42(1): 89-105. (in Chinese)
Delzon, S. and Loustau, D. (2005). Age-related decline in stand water use: Sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology, 129(3-4), 105-119.
Hubbard, R. M., Ryan, M. G., Stiller, V., Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, 24(1), 113-121.
Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Kumagai, T., Shinohara, Y., Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest Ecology and Management, 260(8), 1295-1302
Kramer, P. J. (1983) Water relations of plants. New York: Academic Press.
Kume, T., Tsuruta, K., Komatsu, H., Kumagai, T., Higashi, N., Shinohara, Y., Otsuki, K. (2009). Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology, 30(1), 129-138.
Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Umebayashi, T., Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: (I) Applicability of sap flux measurements. Forest Ecology and Management, 260(8), 1287-1294.
Laplace, S. (2013) Study on transpiration in a Taiwanese Moso bamboo forest using sap flow measurement. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-87
Liese, W. and Weiner, G. (1996) Ageing of bamboo culms. A review. Wood Science and Technology, 30(2), 77-89.
Lin, S. J. (2016) Effect of culm age on transpiration in a Taiwan Moso bamboo forest School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-49
Lin, W. C., Kang, Z. Y., Huang, S. G., Jiang, T. (1962). Investigation on resources of important bamboos in Taiwan. Co-operative bulletin of Taiwan forestry research institute, 4.
Lobovikov, M., Ball, L., Guardia, M., Russo, L. (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment. Food and Agriculture Organization of the United Nations., 1-55.
Naor, A. (2000). Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Horticulturae, 537, 447-454.
Pataki, D. E., Oren, R., Katul, G., Sigmon, J. (1998). Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiology, 18(5), 307-315.
Roberts, S., Vertessy, R., Grayson, R. (2001). Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management, 143(1-3), 153-161.
Röll, A., Niu, F., Meijide, A., Hardanto, A., Knohl, A., Hölscher, D. (2015). Transpiration in an oil palm landscape: Effects of palm age. Biogeosciences, 12(19), 5619-5633.
Ripullone, F., Guerrieri, M. R., Nole’, A., Magnani, F., Borghetti, M. (2007). Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees, 21(3), 371-378.
Ryan, M. G., Phillips, N., Bond, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29(3), 367-381.
Vertessy, R. A., Watson, F. G., O′sullivan, S. K. (2001). Factors determining relations between stand age and catchment water balance in mountain ash forests. Forest Ecology and Management, 143(1-3), 13-26.
Saliendra, N., Sperry, J., Comstock, J. (1995). Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta, 196(2).
Secchi, F. and Zwieniecki, M. A. (2012). Analysis of Xylem Sap from Functional (Nonembolized) and Nonfunctional (Embolized) Vessels of Populus nigra: Chemistry of Refilling. Plant Physiology, 160(2), 955-964.
Sperry, J. S., Hacke, U. G., Oren, R., Comstock, J. P. (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25(2), 251-263.
Tyree, M. T. and Zimmermann, M. H. (2002). Xylem structure and the ascent of sap. Berlin: Springer.
Sano, Y., Okamura, Y., Utsumi, Y. (2005). Visualizing water-conduction pathways of living trees: Selection of dyes and tissue preparation methods. Tree Physiology, 25(3), 269-275.
Su, M. P. (2017) Long-term stand transpiration estimates in a Japanese cedar forest, central Taiwan: Calibration of thermal dissipation sap flow measurements and its application to field data. School of Forestry and Resource Conservation College of Bioresources and Agriculture National Taiwan University Master Thesis, 1-100
Wang, D. W. (2011) The cultivation and management of bamboo forests. Forest Newsletter, 18(1), 3-7 (in chinese)
Wang, J., Chen, T. H., Chung, H. Y., Li, T. I., Liu, C. P. (2009). The structures, aboveground biomass carbon storage of Phyllostachys pubescens stands in Huisun Experimental Forest Station and Shi-Zhuo. Quarterly Journal of Forest Research, 34, 17-26. (in Chinese)
Whitehead, D., Livingston, N. J., Kelliher, P., Hogan, K. P., Pepin, S., Mcseveny, T., Byers, J. (1996). Response of transpiration and photosynthesis to a transient change in illuminated foliage area for a Pinus radiata D. Don tree. Plant, Cell and Environment, 19(8), 949-957.
Yang, S., Zhang, Y., Sun, M., Goldstein, G., Cao, K. (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: Embolism refilling by nocturnal root pressure. Tree Physiology, 32(4), 414-422.
Zhao, X. H., Zhao, P., Zhang, Z. Z., Zhu, L.W., Niu, J. F., Ni, G.Y., Hu, Y.T., Ouyang L. (2017) Sap flow-based transpiration in Phyllostachys pubescens: applicability of the TDP methodology, age effect and rhizome role. Trees, 31, 765-779
Zimmermann, M. H. and Tomlinson, P. B. (1972). The Vascular System of Monocotyledonous Stems. Botanical Gazette, 133(2), 141-155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71632-
dc.description.abstract孟宗竹 (Phyllostachys pubescens) 在台灣為一廣泛分布竹類, 其林分擴張可能影響當地生態系的水分循環與利用,其蒸散、水分潛勢、樹液流與水分導度會是當地森林生態系水分利用循環的重要因子。為了往後竹林經營,孟宗竹的水分利用特性值得探討研究。在前人研究中,已發現孟宗竹林分相比鄰近常見針葉造林地,有較高的樹液流流速和年蒸散量。然而竹桿年齡對孟宗竹水分利用特性卻尚未有進一步探討,這對生長壽命相對較短的孟宗竹來說相當重要。因此本實驗目的在於探討孟宗竹年齡對 (1) 葉片水分潛勢及 (2) 竹桿水分導度之影響 (3) 將前述兩點結果與前人研究之孟宗竹樹液流特性整合,並大致闡述竹桿年齡對各水分利用特性相互作用之影響。本研究以一、二、三、四、五、大於五年生孟宗竹為研究對象。葉片水分潛勢於2017年四月至 2018 四月以植物水分潛勢計量測。竹桿染色試驗將竹桿內維管束染色,以計算染色維管束面積與數量分別占整體維管束面積與數量之比例,並用於探討竹桿水分導度。
研究結果顯示五年生與大於五年生的孟宗竹在正午時其葉片水分潛勢顯著較小,但在黎明時,葉片水分潛勢於各年齡間並無顯著差異。竹桿染試驗中,四、五和大於五年生的孟宗竹相比於其他年生孟宗竹,有較小的染色面積比例和染色個數比例。根據上述觀察和前人研究推論,五年生和大於五年生的孟宗竹有著過低的葉片水分潛勢,此現象可能是源於五年生和大於五年生的孟宗竹中較低的竹桿水分導度,而此推測也在染色試驗中得證。造成染色比例較低的原因可能為孟宗竹維管束中的栓塞和木質素物質的填充。綜上所述,此研究推測孟宗竹在年齡大於四年後有較高可能性發生水分利用衰退。而在水分利用特性的相互關係中,此研究證實了老齡竹桿中較低的水分導度可能造成過低的葉片水分潛勢,而此水分利用特性可能抑制氣孔導度,進而降低樹液流流速以避免維管束氣穴現象和其他水分逆境。
zh_TW
dc.description.abstractMoso Bamboo (Phyllostachys pubescens) is a widely spread bamboo in Taiwan. The expansion of Moso bamboo in Taiwan may alter the water cycle in local ecosystem. Water use characteristics, such as transpiration, sap flux, plant water status and culm conductivity in Moso bamboo forest, can determine the water cycle in a forest ecosystem. Thus, in order to deal with bamboo stand management, it is necessary to study the water use characteristics of Moso bamboo. Previous studies revealed that Moso bamboo had a higher sap flux density; hence, higher annual transpiration than coniferous forests in the surrounding around Taiwan. However, the relationship between the aging of culm and water use characteristics is rarely investigated for Moso bamboo, which has a relatively shorter life span. This study aimed to clarify the age effects on (1) leaf water potential and (2) culm conductivity. Moreover, data on (3) sap flux density investigated in a previous study were integrated with the results of leaf water potential and culm conductivity in this study to comprehensively elaborate the age effects on water use characteristics of Moso bamboo. The 1, 2, 3, 4, 5 and >5-year-old bamboos were selected for observation. Leaf water potential from July 2017 to April 2018 was measure by a pressure chamber. Culm stain experiment was carried out on bamboo culms to estimate the culm conductivity using the ratio of the stained vascular area or number to the total vascular area or number, respectively.
The results showed that 5 and >5-year-old groups had significantly lower midday leaf water potential than the other four age groups. However, no distinctive difference was found in predawn leaf water potential among six age groups. The 4, 5 and >5-year-old groups had less ratio of stained area or number to the total vascular area or number than the other groups. Based on the observation in the present study and the findings in previous studies, excessively low midday leaf water potential for 5 and >5-year-old-groups might result from poor culm hydraulic conductivity. The less stained area ratios of 4, 5 and >5-year-old groups might be the evidence of poor culm hydraulic conductivity. The less stained area ratio was probably due to embolism and tyloses blockage in vascular bundles in older culms. Therefore, Moso bamboo probably starts to show senescence in water use after 4years in age. In terms of relationship to water use, this study confirmed that low culm hydraulic conductivity in the older culms might result in excessively low midday water potential. Such water use characteristics in the older culms may inhibit the stomatal conductance and lead to low sap flux density to avoid cavitation and water stress.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:05:05Z (GMT). No. of bitstreams: 1
ntu-108-R05625026-1.pdf: 4058000 bytes, checksum: cd93882b6292eba11cc10634f444c572 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄 Table of contents
摘要 ii
Abstract iii
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Sap flux density characteristics of Moso bamboo 5
2.2 Transpiration characteristics of Moso bamboo stand 6
2.3 Age effects on plant water use characteristics 8
2.4 Leaf water potential in water use characteristics 10
2.5 Age effects on leaf water potential of Moso bamboo 12
Chapter 3 Method and Materials 14
3.1 Study site and stand structure 14
3.2 Determination of culm age 15
3.3 Leaf water potential measurement 17
3.3.1 Instrument to measure leaf water potential 17
3.3.2 Sampling design 17
3.3.3 Measuring time and period 19
3.4 Culm staining experiment 20
3.4.1 Drilling, Staining and Sampling stained section 20
3.4.2 Sample size 24
3.4.3 Photographing on culm cross sections 25
3.4.4 Calculating the stained area 26
3.5 Methods of Analysis 27
Chapter 4 Results and Discussion 30
4.1 Seasonal variations of leaf water potential in six age groups 30
4.2 Men leaf water potential in six age groups 30
4.3 Culm staining experiment 37
4.3.1 Numbers and area of stained vascular bundles 37
4.3.2 Aspect variation 37
4.3.3 Rarea and Rnumber in six age groups 39
4.4 Relationship among leaf water potential, culm hydraulic conductivity, and sap flux in different age Moso bamboos 42
4.4.1 Relations between midday leaf water potential and sap flux density 42
4.4.2 Relation between stained area ratio and sap flux density 43
4.4.3 Relations between midday leaf water potential and stained area ratio 45
4.4.4 Limitation on the application of the sap flux data and other factors in water use characteristics relations 46
4.5 Age effects on leaf water potential and culm hydraulic conductivity 49
Chapter 5 Conclusions 52
Reference 54
dc.language.isoen
dc.subject孟宗竹zh_TW
dc.subject竹桿年齡zh_TW
dc.subject水分利用特性zh_TW
dc.subject葉片水分潛勢zh_TW
dc.subject竹桿水分導度zh_TW
dc.subjectleaf water potentialen
dc.subjectMoso bambooen
dc.subjectwater use characteristicsen
dc.subjectculm conductivityen
dc.subjectage effectsen
dc.title溪頭孟宗竹林之不同竹桿年齡水分利用特性zh_TW
dc.titleEffects of culm ages on water use characteristics in a Taiwanese Moso bamboo foresten
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor久米朋宣(Tomonori Kume)
dc.contributor.oralexamcommittee鹿兒陽(Erh-Yang Lu)
dc.subject.keyword孟宗竹,竹桿年齡,水分利用特性,葉片水分潛勢,竹桿水分導度,zh_TW
dc.subject.keywordage effects,culm conductivity,leaf water potential,Moso bamboo,water use characteristics,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201804389
dc.rights.note有償授權
dc.date.accepted2019-01-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
Appears in Collections:森林環境暨資源學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
3.96 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved