請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71627
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高振宏(C Robert Kao) | |
dc.contributor.author | Han-Tang Hung | en |
dc.contributor.author | 洪漢堂 | zh_TW |
dc.date.accessioned | 2021-06-17T06:04:57Z | - |
dc.date.available | 2020-11-12 | |
dc.date.copyright | 2020-11-12 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-11-03 | |
dc.identifier.citation | [1] T. Lu, W. Neng, Future internet: The internet of things, 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010, pp. 376-380. [2] P. Sethi, S.R. Sarangi, Internet of things: architectures, protocols, and applications, Journal of Electrical and Computer Engineering (2017) 1-25. [3] A. Martins, M. Pinheiro, A.F. Ferreira, R. Almeida, F. Matos, J. Oliveira, R.P. Silva, H. Santos, M. Monteiro, H. Gamboa, Heterogeneous integration challenges within wafer level fan-out SiP for wearables and IoT, 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, pp. 1485-1492. [4] S.S. Iyer, Heterogeneous integration for performance and scaling, IEEE Transactions on Components, Packaging and Manufacturing Technology 6 (2016) 973-982. [5] E. Higurashi, T. Suga, Review of low-temperature bonding technologies and their application in optoelectronic devices, Electronics and Communications in Japan 99 (2016) 63-71. [6] H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: On the development of low melting temperature Pb-free solders, Microelectronics Reliability 54 (2014) 1253-1273. [7] T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, Impurity and alloying effects on interfacial reaction layers in Pb-free soldering, Materials Science and Engineering: R: Reports 68 (2010) 1-38. [8] H. Ezaki, T. Nambu, R. Ninomiya, Y. Nakahara, C.Q. Wang, M. Morinaga, Estimation of liquidus temperature of Sn-based alloys and its application to the design of Pb-free solder, J Mater Sci: Mater Electron 13(5) (2002) 269-272. [9] G. Ren, I.J. Wilding, M.N. Collins, Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections, Journal of Alloys and Compounds 665 (2016) 251-260. [10] J.B. Lee, H.Y. Hwang, M.W. Rhee, Reliability investigation of Cu/In TLP bonding, Journal of Electronic Materials 44 (2015) 435-441. [11] K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto, K. Niwa, Solder joint reliability of indium-alloy interconnection, Journal of Electronic Materials 24 (1995) 39-45. [12] S. Bickel, S. Sen, J. Meyer, I. Panchenko, J.M. Wolf, Cu-In fine-pitch-interconnects: influence of processing conditions on the interconnection quality, 2018 7th Electronic System-Integration Technology Conference (ESTC), 2018, pp. 1-6. [13] S. Bickel, R. Hoehne, I. Panchenko, J. Meyer, J.M. Wolf, Cu-In fine-pitch-interconnects with enhanced shear strength, 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018, pp. 808-813. [14] I. Panchenko, S. Bickel, J. Meyer, M. Mueller, J.M. Wolf, Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integration, Japanese Journal of Applied Physics 57 (2017) 02BC05. [15] S. Bickel, I. Panchenko, W. Wahrmund, V. Neumann, J. Meyer, J.M. Wolf, Cu-In-microbumps for low-temperature bonding of fine-pitch-interconnects, 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017, pp. 2092-2096. [16] C.L. Yu, S.S. Wang, T.H. Chuang, Intermetallic compounds formed at the interface between liquid indium and copper substrates, Journal of Electronic Materials 31 (2002) 488-493. [17] H. Okamoto, Cu-In (copper-indium), Journal of Phase Equilibria and Diffusion 26 (2005) 645-645. [18] D.G. Kim, J.W. Yoon, C.Y. Lee, S.B. Jung, Reaction diffusion and formation of Cu11In9 and In27Ni10 phases in the couple of indium-substrates, MATERIALS TRANSACTIONS 44 (2003) 72-77. [19] L.H. Su, Y.W. Yen, C.C. Lin, S.W. Chen, Interfacial reactions in molten Sn/Cu and molten In/Cu couples, Metallurgical and Materials Transactions B 28(5) (1997) 927-934. [20] Y.S. Chiu, H.Y. Yu, H.T. Hung, Y.W. Wang, C.R. Kao, Phase formation and microstructure evolution in Cu/In/Cu joints, Microelectronics Reliability 95 (2019) 18-27. [21] Y. Tian, C. Hang, X. Zhao, B. Liu, N. Wang, C. Wang, Phase transformation and fracture behavior of Cu/In/Cu joints formed by solid–liquid interdiffusion bonding, J Mater Sci: Mater Electron 25 (2014) 4170-4178. [22] Y. Tian, N. Wang, Y. Li, C. Wang, Mechanism of low temperature Cu-In Solid-Liquid Interdiffusion bonding in 3D package, 2012 13th International Conference on Electronic Packaging Technology High Density Packaging, 2012, pp. 216-218. [23] L. Litynska, J. Wojewoda, P. Zieba, M. Faryna, W. Gust, E.J. Mittemeijer, Characterization of interfacial reactions in Cu/In/Cu joints, Microchimica Acta 145 (2004) 107-110. [24] S. Sommadossi, W. Gust, E.J. Mittemeijer, Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections, Materials Science and Technology 19 (2003) 528-534. [25] A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, Journal of the American Chemical Society 19 (1897) 930-934. [26] M.J. Madito, H.C. Swart, J.J. Terblans, AES and XRD study of In/Cu thin films deposited onto SiO2 by electron beam evaporation. [27] W. Keppner, T. Klas, W. Körner, R. Wesche, G. Schatz, Compound formation at Cu-In thin-film interfaces detected by perturbed γ-γ angular correlations, Physical Review Letters 54(21) (1985) 2371-2374. [28] W. Keppner, R. Wesche, T. Klas, J. Voigt, G. Schatz, Studies of compound formation at Cu-In, Ag-In and Au-In interfaces with perturbed γ-γ angular correlations, Thin Solid Films 143(2) (1986) 201-215. [29] C. Dzionk, H. Metzner, H.J. Lewerenz, H.E. Mahnke, Perturbed angular correlations study of thin Cu–In films, Journal of Applied Physics 78(4) (1995) 2392-2397. [30] M. Gossla, H. Metzner, H.E. Mahnke, Coevaporated Cu–In films as precursors for solar cells, Journal of Applied Physics 86(7) (1999) 3624-3632. [31] A.A. Wronkowska, A. Wronkowski, A. Bukaluk, M. Trzcinski, K. Okulewicz, Ł. Skowroński, Structural analysis of In/Ag, In/Cu and In/Pd thin films on tungsten by ellipsometric, XRD and AES methods, Applied Surface Science 254(14) (2008) 4401-4407. [32] A.A. Wronkowska, A. Wronkowski, Ł. Skowroński, Non-destructive characterization of In/Ag and In/Cu diffusive layers, Journal of Alloys and Compounds 479(1) (2009) 583-588. [33] Y.F. Lin, H.T. Hung, H.Y. Yu, C.R. Kao, Y.W. Wang, Phase stabilities and interfacial reactions of the Cu–In binary systems, Journal of Materials Science-Materials in Electronics (2020). [34] H. Metzner, M. Brüssler, K.D. Husemann, H.J. Lewerenz, Characterization of phases and determination of phase relations in the Cu-In-S system by γ-γ perturbed angular correlations, Physical Review B 44(21) (1991) 11614-11623. [35] A. Bolcavage, S.W. Chen, C.R. Kao, Y.A. Chang, A.D. Romig, Phase equilibria of the cu-in system I: Experimental investigation, Journal of Phase Equilibria 14(1) (1993) 14-21. [36] H. Migge, Thermochemistry in the system Cu–In–S at 298 K, Journal of Materials Research 6(11) (1991) 2381-2386. [37] K.A. Lindahl, J.J. Moore, D.L. Olson, R. Noufi, B. Lanning, Quantitative investigation of copper/indium multilayer thin film reactions, Thin Solid Films 290-291 (1996) 518-524. [38] H.T. Hung, P.T. Lee, C.H. Tsai, C.R. Kao, Artifact-free microstructures of the Cu–In reaction by using cryogenic broad argon beam ion polishing, Journal of Materials Research and Technology 9(6) (2020) 12946-12954. [39] L. Klinger, Y. Bréchet, G. Purdy, On the kinetics of interface-diffusion-controlled peritectoid reactions, Acta Materialia 46(8) (1998) 2617-2621. [40] Y.H. Tseng, M.S. Yeh, T.H. Chuang, Interfacial reactions between liquid indium and nickel substrate, Journal of Electronic Materials 28(2) (1999) 105-108. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71627 | - |
dc.description.abstract | 隨著物聯網(IoT)的快速發展,由於低溫接合技術可以避免物聯網系統中的感測器、執行器及光電元件等熱敏感元件在接合過程中因為高溫環境而導致失效,多年来一直被產業界及學術界廣泛研究。而在眾多低溫接合技術中,固液擴散(SLID)接合是目前最可靠的接合技術,但值得注意的是,固液擴散製程的製程溫度還是受到所採用的銲料合金的熔點所限制,目前廣泛使用的高錫無鉛合金銲料的熔點對於上述的熱敏材料而言依舊過高,因此開發具有低熔點的新型合金銲料是目前產業界非常關注的議題。在本研究中鑑於銦的熔點僅156.76 ℃,因此我們選擇銦做為我們研究下一代低溫銲料的對象,並選擇常用的銅和鎳作為基板材料。 本研究包含了純銦與基板材料在180 ℃下的固液反應以及100 ℃、120 ℃和140 ℃下的固固反應。為了解決研磨和拋光過程中碳化矽和鑽石磨料容易嵌入於較軟的銦中的問題,我們另外使用氬離子拋光對試片進行處理。拋光後的試片我們透過具有背向散射電子偵測器的掃描式電子顯微鏡對介面的形態和微結構變化進行分析,並同時使用能量色散X射線分析化合物的組成,及使用高功率X光繞射儀鑑定在介面處所形成的介金屬化合物的晶體結構。研究的最後,我們根據上述介面反應的實驗成果,開發了一個最高溫僅160 ℃的低溫接合技術。 | zh_TW |
dc.description.abstract | With the rapid growth in the internet of things (IoT), low-temperature bonding has been investigated intensively over years because it can prevent the risk of bond failure induced by the heat localization at sensors, actuators, and optoelectronic devices embedded in IoT systems. Among numerous low-temperature bonding strategies, solid-liquid interdiffusion (SLID) bonding is the most reliable bonding technique at present. However, it should be noted that there is a limit to how low the reflow temperature can go, which is the melting point of the solder alloy employed. To that end, since the melting points of the widely used high-Sn Pb-free alloys are high for heat-sensitive materials, development of new solder alloys with low melting points is essentially needed. In this research, Indium was chosen as the next-generation low temperature solder materials due to its melting point of 156.76℃. Commonly used Cu and Ni was chosen as the substrate materials. Solid-liquid reaction at 180 ℃ and solid-solid reactions at 100 ℃, 120 ℃, and 140 ℃ between In and substrates were carried in this research. To address the problem of the embedment of the SiC and diamond abrasives in the soft indium phase during grinding and polishing, additional argon ion milling polishing was used for final polishing to obtain artifact-free cross-sectional samples. Afterwards, the morphology of the interfacial layers and the microstructure evolution of the intermetallics at the interface were examined by scanning electron microscope equipped with a backscattered electron detector. Energy dispersive X-ray spectroscopy was utilized for the compositional analysis. A high-power X-ray diffractometer with a Cu-Kα source was used to identify the crystallographic structure of the intermetallics formed at the interface. Based the aforementioned results, a 160 ℃ low-temperature bonding method was developed for fine pitch chip-stacking application by SLID bonding technology at the end of this research. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:04:57Z (GMT). No. of bitstreams: 1 U0001-0311202011482600.pdf: 14693702 bytes, checksum: f75e9941932e760d072450c1ba8b4d93 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 摘要 iii Abstract iv Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 1-1 Demand for a Low-temperature Bonding Process 1 1-2 Low-temperature Solder Materials 2 1-3 The Aims of This Study 4 Chapter 2 Interfacial Reactions of Solid Cu with Liquid In 5 2-1 Literature Review 5 2-2 Experimental Methods 8 2-2-1 Preparation of samples 8 2-2-2 Cross-section milling and characterization 9 2-3 Results 11 2-3-1 Interfacial microstructure 11 2-3-2 Microstructure evolution and dissolution behavior 13 2-4 Discussion 18 2-4-1 Proposed mechanism of microstructure evolution 18 2-4-2 The morphology of the two-phase layer 20 Chapter 3 Interfacial Reactions of Solid Cu with Solid In 22 3-1 Literature Review 22 3-2 Experimental Procedures 24 3-3 Results and Discussion 26 3-3-1 Evolution of microstructure during thermal aging 26 3-3-2 The peritectoid temperature of CuIn2 32 3-3-3 Solid-state aging at room temperature 33 Chapter 4 Interfacial Reactions of Ni with In 35 4-1 Literature Review 35 4-2 Experimental Procedures 38 4-2-1 Material and sample preparation 38 4-2-2 Cross section milling 40 4-3 Results and Discussion 41 4-3-1 Interaction of liquid In with solid Ni 41 4-3-2 Interaction of solid In with solid Ni 42 Chapter 5 Low Temperature SLID Bonding of Cu/Ni/In-Sn2.5Ag/Cu System 46 5-1 Experimental Procedures 46 5-2 Results and Discussion 48 Chapter 6 Conclusion 52 6-1 Interfacial Reactions of Solid Cu with Liquid In 52 6-2 Interfacial Reactions of Solid Cu with Solid In 52 6-3 Interfacial Reactions of Ni with Solid In 53 6-4 Low-temperature SLID Bonding of Cu/Ni/In-Sn2.5Ag/Cu System 54 References 55 Curriculum Vitae 60 | |
dc.language.iso | en | |
dc.title | 使用銦作為低溫銲接材料之研究 | zh_TW |
dc.title | Study of Using Indium as Low-Temperature Solder Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林士剛(Shih-Kang Lin),吳子嘉(Albert T Wu),何政恩(Cheng-En Ho),陳志銘(Chih-Ming Chen) | |
dc.subject.keyword | 低溫接合,固液相互擴散接合,銦, | zh_TW |
dc.subject.keyword | low temperature bonding,solid-liquid interdiffusion bonding,indium, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU202004319 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-11-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0311202011482600.pdf 目前未授權公開取用 | 14.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。