請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71610
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧子彬(TZU-PIN LU) | |
dc.contributor.author | Lu-Ting Chiu | en |
dc.contributor.author | 邱露葶 | zh_TW |
dc.date.accessioned | 2021-06-17T06:04:31Z | - |
dc.date.available | 2019-03-05 | |
dc.date.copyright | 2019-03-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-01-23 | |
dc.identifier.citation | 1. 衛生福利部國民健康署. (2015, Nov 11). 肝病防治及肝癌. Retrived Mar 28, 2017, from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=207.
2. Lee SY, Song KH, Koo I, Lee KH, Suh KS, Kim BY. Comparison of pathways associated with hepatitis B- and C-infected hepatocellular carcinoma using pathway-based class discrimination method. Genomics 2012;99(6):347-54. 3. Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T, et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res 2002;62(14):3939-3944. 4. Sachdeva M, Chawla YK, Arora SK. Immunology of hepatocellular carcinoma. World J Hepatol 2015;7(17):2080-90. 5. Ng J, Wu J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: similarities and differences. Hepat Mon 2012;12(10 HCC):e7635. 6. Jackson R, Psarelli E-E, Berhane S, Khan H, Johnson P. Impact of Viral Status on Survival in Patients Receiving Sorafenib for Advanced Hepatocellular Cancer: A Meta-Analysis of Randomized Phase III Trials. J Clin Oncol 2017;35(6):622-628. 7. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010;10(8):554-67. 8. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998;27(2):407-14. 9. Chen CH, Lee HS, Huang GT, Yang PM, Yu WY, Cheng KC, et al. Phenotypic analysis of tumor-infiltrating lymphocytes in hepatocellular carcinoma. Hepatogastroenterology 2007;54(77):1529-33. 10. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015;27(4):462-72. 11. Li JQ, Yu XJ, Wang YC, Huang LY, Liu CQ, Zheng L, et al. Distinct patterns and prognostic values of tumor-infiltrating macrophages in hepatocellular carcinoma and gastric cancer. J Transl Med 2017;15(1):37. 12. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140(6):883-99. 13. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141(1):39-51. 14. Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 2011;21(1):35-43. 15. Hiroshima Y, Maawy A, Hassanein MK, Menen R, Momiyama M, Murakami T, et al. The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid. PLoS One 2014;9(8):e103382. 16. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013;2013:187204. 17. Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 2012;42(1):1-7. 18. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009;86(5):1065-73. 19. Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008;26(16):2707-16. 20. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006;10(2):99-111. 21. Matsui M, Machida S, Itani-Yohda T, Akatsuka T. Downregulation of the proteasome subunits, transporter, and antigen presentation in hepatocellular carcinoma, and their restoration by interferon-gamma. J Gastroenterol Hepatol 2002;17(8):897-907. 22. Ninomiya T, Akbar SM, Masumoto T, Horiike N, Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 1999;31(2):323-31. 23. Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006;132(5):293-301. 24. Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 2011;54(5):948-55. 25. Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS, et al. Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol 2011;54(3):497-505. 26. Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, et al. Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology 2016;150(7):1646-1658 e17. 27. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 2015;62(2):481-95. 28. Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, et al. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 2010;185(3):1544-9. 29. Merched MLaAJ. Tumor-Associated Macrophages, Inflammation and Pathogenesis of Hepatocellular Carcinoma. Journal of Molecular and Genetic Medicine 2014;8(3). 30. Subleski JJ, Wiltrout RH, Weiss JM. Application of tissue-specific NK and NKT cell activity for tumor immunotherapy. J Autoimmun 2009;33(3-4):275-81. 31. Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology 2013;57(4):1654-62. 32. Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008;129(3):428-37. 33. Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 1998;83(1):58-63. 34. Wu Y, Kuang DM, Pan WD, Wan YL, Lao XM, Wang D, et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 2013;57(3):1107-16. 35. Sun C, Sun HY, Xiao WH, Zhang C, Tian ZG. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin 2015;36(10):1191-9. 36. Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, et al. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol 2010;15(6):552-558. 37. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009;114(8):1537-44. 38. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006;6(1):24-37. 39. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 2007;13(23):6947-58. 40. Thompson ED, Enriquez HL, Fu YX, Engelhard VH. Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 2010;207(8):1791-804. 41. Pang YL, Zhang HG, Peng JR, Pang XW, Yu S, Xing Q, et al. The immunosuppressive tumor microenvironment in hepatocellular carcinoma. Cancer Immunol Immunother 2009;58(6):877-86. 42. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133(5):775-87. 43. Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011;241(1):260-8. 44. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007;132(7):2328-39. 45. Mossanen JC, Tacke F. Role of lymphocytes in liver cancer. Oncoimmunology 2013;2(11):e26468. 46. Garnelo M, Tan A, Her Z, Yeong J, Lim CJ, Chen J, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 2017;66(2):342-351. 47. Shi JY, Gao Q, Wang ZC, Zhou J, Wang XY, Min ZH, et al. Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 2013;19(21):5994-6005. 48. Liu RX, Wei Y, Zeng QH, Chan KW, Xiao X, Zhao XY, et al. Chemokine (C-X-C motif) receptor 3-positive B cells link interleukin-17 inflammation to protumorigenic macrophage polarization in human hepatocellular carcinoma. Hepatology 2015;62(6):1779-90. 49. Song S, Yuan P, Li P, Wu H, Lu J, Wei W. Dynamic analysis of tumor-associated immune cells in DEN-induced rat hepatocellular carcinoma. Int Immunopharmacol 2014;22(2):392-9. 50. Brunner SM, Itzel T, Rubner C, Kesselring R, Griesshammer E, Evert M, et al. Tumor-infiltrating B cells producing antitumor active immunoglobulins in resected HCC prolong patient survival. Oncotarget 2017;8(41):71002-71011. 51. Honda M, Kaneko S, Kawai H, Shirota Y, Kobayashi K. Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology 2001;120(4):955-66. 52. Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014;10(3):e1004032. 53. Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev 2014;1(3):396-412. 54. Ohtsuki T, Kimura K, Tokunaga Y, Tsukiyama-Kohara K, Tateno C, Hayashi Y, et al. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice. J Virol 2016;90(1):300-7. 55. Saha B, Kodys K, Szabo G. Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation via TGF-β. Cellular and molecular gastroenterology and hepatology 2016;2(3):302-316. 56. Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015;12(3):292-302. 57. Cariani E, Pilli M, Zerbini A, Rota C, Olivani A, Zanelli P, et al. HLA and killer immunoglobulin-like receptor genes as outcome predictors of hepatitis C virus-related hepatocellular carcinoma. Clin Cancer Res 2013;19(19):5465-73. 58. Guo CL, Yang HC, Yang XH, Cheng W, Dong TX, Zhu WJ, et al. Associations between infiltrating lymphocyte subsets and hepatocellular carcinoma. Asian Pac J Cancer Prev 2012;13(11):5909-13. 59. Huang Y, Wang F, Wang Y, Zhu Z, Gao Y, Ma Z, et al. Intrahepatic interleukin-17+ T cells and FoxP3+ regulatory T cells cooperate to promote development and affect the prognosis of hepatocellular carcinoma. J Gastroenterol Hepatol 2014;29(4):851-9. 60. Parmiani G, Anichini A. T cell infiltration and prognosis in HCC patients. J Hepatol 2006;45(2):178-81. 61. Thakur S, Singla A, Chawla Y, Rajwanshi A, Kalra N, Arora SK. Expansion of peripheral and intratumoral regulatory T-cells in hepatocellular carcinoma: a case-control study. Indian J Pathol Microbiol 2011;54(3):448-53. 62. Yan J, Liu XL, Xiao G, Li NL, Deng YN, Han LZ, et al. Prevalence and clinical relevance of T-helper cells, Th17 and Th1, in hepatitis B virus-related hepatocellular carcinoma. PLoS One 2014;9(5):e96080. 63. Shuai Z, Leung MWY, He X, Zhang W, Yang G, Leung PSC, et al. Adaptive immunity in the liver. Cellular &Amp; Molecular Immunology 2016;13:354. 64. Xue H, Lin F, Tan H, Zhu Z-Q, Zhang Z-Y, Zhao L. Overrepresentation of IL-10-Expressing B Cells Suppresses Cytotoxic CD4+ T Cell Activity in HBV-Induced Hepatocellular Carcinoma. PLoS ONE 2016;11(5):e0154815. 65. Doi H, Iyer TK, Carpenter E, Li H, Chang KM, Vonderheide RH, et al. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology 2012;55(3):709-19. 66. Kakumu S, Ito S, Ishikawa T, Mita Y, Tagaya T, Fukuzawa Y, et al. Decreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infection. J Gastroenterol Hepatol 2000;15(4):431-6. 67. Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T, et al. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res 2002;62(14):3939-44. 68. Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther 2010;10(11):1563-72. 69. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013;4:2612. 70. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015;12(5):453-7. 71. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al. Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity 2016;44(3):698-711. 72. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 2015;16:64. 73. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study. PLoS Med 2016;13(12):e1002194. 74. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359(19):1995-2004. 75. Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, et al. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol 2018;12(1):89-113. 76. Villa E, Critelli R, Lei B, Marzocchi G, Camma C, Giannelli G, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut 2016;65(5):861-9. 77. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010;70(24):10202-12. 78. Tsuchiya M, Parker JS, Kono H, Matsuda M, Fujii H, Rusyn I. Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. Mol Cancer 2010;9:74. 79. Wei C, Ni C, Song T, Liu Y, Yang X, Zheng Z, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol 2010;185(2):1158-68. 80. Castello G, Costantini S, Scala S. Targeting the inflammation in HCV-associated hepatocellular carcinoma: a role in the prevention and treatment. J Transl Med 2010;8(1):109. 81. Cancer Genome Atlas Research Network. Electronic address wbe, Cancer Genome Atlas Research N. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017;169(7):1327-1341 e23. 82. Arzumanyan A, Reis HMGPV, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013;13:123. 83. Kuang D-M. Positive Feedback Loop between B cells/plasma cells and Macrophages Promote M2 Macrophage-Elicited Hepatoma Progression. J Immunol 2016;196(1 Supplement):211.6-211.6. 84. Ouyang FZ, Wu RQ, Wei Y, Liu RX, Yang D, Xiao X, et al. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat Commun 2016;7:13453. 85. Kuang D-M, Zhao Q, Xu J, Yun J-P, Wu C, Zheng L. Tumor-Educated Tolerogenic Dendritic Cells Induce CD3ε Down-Regulation and Apoptosis of T Cells through Oxygen-Dependent Pathways. J Immunol 2008;181(5):3089-3098. 86. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359(4):378-90. 87. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10(1):25-34. 88. Lue A, Serrano MT, Bustamante FJ, Inarrairaegui M, Arenas JI, Testillano M, et al. Neutrophil-to-lymphocyte ratio predicts survival in European patients with hepatocellular carcinoma administered sorafenib. Oncotarget 2017;8(61):103077-103086. 89. Tu J-F, Ding Y-H, Ying X-H, Wu F-Z, Zhou X-M, Zhang D-K, et al. Regulatory T cells, especially ICOS+ FOXP3+ regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016;6:35056. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71610 | - |
dc.description.abstract | 癌症至今為國人十大死因之首已蟬聯35年,而又肝癌於我國十大癌症死亡率中名列第二,且國際世界衛生組織(WHO)公布2015年全球死於肝癌人數在所有癌症中排名第二(約78萬人死亡)。據國民健康署統計,死於肝癌的病患中,約有70%的人為B型肝炎帶原者,而20%為慢性C型肝炎感染者,無疑地,肝癌是亟待解決的衛生議題。
腫瘤浸潤白血球(TILs)指的是浸潤在腫瘤組織的白血球,正常來說他們有能力去辨識並且在腫瘤變為臨床可辦別以前殲滅這些轉化細胞。調節人體部分免疫系統來抵抗癌症的免疫療法成為近期抗癌新趨勢。然而,免疫療法主要的阻礙就是在腫瘤的微環境中發現局部免疫抑制的現象。已有許多研究顯示,腫瘤浸潤白血球顯著影響肝癌病人的預後,例如,調節性T淋巴球 (Tregs)主要會產生免疫抑制的反應,創造出腫瘤微環境的耐受性,所以若我們可以瞭解浸潤白血球在腫瘤免疫中扮演的角色,這可能可以成為抗癌治療的突破。而過去不少研究已針對肝癌中不同的腫瘤浸潤白血球做研究,但目前少有全面性將HBV、HCV相關之肝癌做免疫細胞之間差異的研究。本研究目的為探究HBV、HCV肝癌和肝癌中腫瘤浸潤白血球與預後之關聯性,並比較不同病毒狀態肝癌間腫瘤浸潤白血球影響之差異。 故本研究共收錄6組資料集,共有828患者,並將之分為B型肝炎肝癌(B-HCC; n=313)、C型肝炎肝癌(C-HCC; n=135)和肝癌(HCC; n=828)共三組。利用近期內新發展之ESTIMATE和CIBERSOT這兩種方法,藉由基因表達微陣列資料,經演算法計算出組織中免疫細胞的量和22種免疫細胞在組織的相對比例,如此一來,我們可以全面性的了解腫瘤浸潤白血球在組織的分布概況,和了解腫瘤浸潤白血球在不同病毒感染的肝癌之間影響預後的差異。 本研究觀察到在三組中,非腫瘤組織的免疫細胞都較腫瘤組織多,但浸潤的情況不太一樣,在B-HCC、C-HCC和HCC組中分別有12、4和12種白血球在腫瘤和非腫瘤組織中的比例有顯著差異,這可能和病毒種類的不同或有無有關,而目前發現M0 巨噬細胞和CD8 T細胞在這三種類型的肝癌中的浸潤情形是一致的。在另一方面,影響存活之免疫細胞於三組之間卻不盡相同,而在B-HCC和HCC組擁有相同浸潤情形且影響存活的免疫細胞有:活化的樹突細胞和M0巨噬細胞,並顯示此兩免疫細胞對存活有負向影響。 我們在三組之中各別顯示在腫瘤微環境的影響下參與癌變的過程並且會直接影響病患的存活的免疫細胞,代表這些免疫細胞為日後免疫治療具有潛力之標的,且未來肝癌免疫治療可以針對不同病毒狀態做不同的考量和調整,以提升治療的療效。 | zh_TW |
dc.description.abstract | Cancer have been a leading cause of death lasting over 35 years in Taiwan, and hepatocellular carcinoma (HCC) ranks second among top ten cancer mortality rate. Furthermore, World Health Organization announced that HCC causing 788,000 deaths worldwide in 2015 which is in the second place in all types of cancer. According to the investigation of Health Promotion Administration, Ministry of Health and Welfare, HBV-related and HCV-related accounts respectively for 70% and 20% of HCC. Undoubtedly, HCC is an urgent problem in public health.
Tumor infiltrating leukocytes (TILs) are immune cells which surrounding around tumor and which are capable of distinguishing and targeting transformed cells, and eliminate tumor before becoming clinically apparent. Immunotherapy is the new trend for anti-tumor strategy which modulates human body immune response. However, tumor-drive immunosuppression was found in microenvironment which is the main impediment of immunotherapy. There were many research have shown that TILs have effect on prognosis of HCC patients. For example, regulatory T cells (Tregs) generate immunosuppressive response and create the microenvironment tolerance. It may a breakthrough in anti-cancer therapy by realizing the role of TILs in tumor immunity. In the past, the majority of published research focused on different TILs in HCC, relatively, very few studies had comprehensively addressed HCC separated into HBV-related or HCV-related. This research will explore the association between TILs and prognosis in B-HCC, C-HCC and HCC and compare the difference of TILs influence on HCC with different virus status. There are 828 patients among six datasets in this study, and divided into three groups, B-HCC (HBV-related HCC; n=313), C-HCC (HCV-related HCC; n=135) and HCC (n=828). This study proposes developed methods, ESTIMATE and CIBERSORT, to assess the immune score which implicated the quantity of leukocytes and the relative proportion among 22 immune cell in tumor/non-tumor tissue through gene expression microarray profile. Thus, we can understand the overview of TILs in tissue and the prognostic difference in HCC with different virus status. We observed that the density of infiltrating leukocytes in non-tumor is more than in tumor, and the fraction of TILs between B-HCC, C-HCC, HCC are quite different, may related to the virus status. The percentage of TILs in tumor is significantly different from in non-tumor which was found 12, 4 and 12 kinds of immune cells in B-HCC, C-HCC and HCC, respectively. As can be seen that M0 macrophage and CD8 T cell have the same pattern in these three groups. On the other hand, there are different immune cells affecting survival within three groups, whereas, activated dendritic cell and M0 macrophage in B-HCC and HCC groups have the same infiltrating scenario and both have negative effect on survival simultaneously. We demonstrate the immune cells which participate in the process of carcinogenesis under the influence of tumor microenvironment and directly affect survival in three groups may represents potential targets for future immunotherapy, meanwhile, it suggests that we make different considerations and adjustments regarding different types of virus status to improve therapeutic efficacy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:04:31Z (GMT). No. of bitstreams: 1 ntu-108-R05847003-1.pdf: 1493084 bytes, checksum: 2653e1cbc10f9c9bcfab211f43f86476 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 v 第一章 導論 1 1.1 文獻回顧 2 1.1.1 肝癌(Hepatocellular carcinoma; HCC)腫瘤浸潤白血球 (Tumor infiltrating leukocytes; TILs) 2 1.1.2比較B型肝炎(HBV)與C型肝炎(HCV)相關之肝癌(HCC)之間腫瘤浸潤白血球之相同相異之處 5 1.2 研究目的與研究問題 7 第二章 材料與方法 9 2.1 樣本 9 2.1.1資料選擇 9 2.1.2納入與排除的條件 9 2.2 計算腫瘤浸潤免疫細胞方法 10 2.2.1腫瘤浸潤免疫細胞數量計算 10 2.2.2腫瘤浸潤免疫細胞比例計算 10 2.3 數據分析 10 第三章 結果 11 3.1 資料的選擇 11 3.2 比較肝癌患者的腫瘤組織與鄰近非腫瘤組織之浸潤免疫細胞數量 11 3.3 比較肝癌患者的腫瘤組織與鄰近非腫瘤組織之浸潤免疫細胞組成的比例 11 3.4 臨床診斷與腫瘤組織的免疫細胞比例之存活分析 13 3.5 腫瘤組織與鄰近非腫瘤組織之浸潤免疫細胞組成比例差異與存活的關係 15 第四章 討論 17 參考文獻 44 圖目錄 圖一、分析流程圖 40 圖二、利用ESTIMATE計算之腫瘤/非腫瘤浸潤白血球免疫分數 41 圖三、利用CIBERSORT比較腫瘤組織與鄰近非腫瘤組織之浸潤免疫細胞組成比例差異 42 圖四、GSE14520 Kaplan-Meier曲線及log-log圖 43 表目錄 表一、統整B-HCC、C-HCC和HCC腫瘤浸潤白血球於腫瘤組織分布情形以及預後結果 21 表二、收錄之研究基本資料 22 表三、B-HCC組比較腫瘤與非腫瘤浸潤白血球之比例差異 25 表四、C-HCC組比較腫瘤與非腫瘤浸潤白血球之比例差異 26 表五、HCC組比較腫瘤與非腫瘤浸潤白血球之比例差異 27 表六、在B-HCC、C-HCC、HCC組有相同浸潤情形的TILs 29 表七、GSE14520資料集臨床變項之Cox Regression單變項分析 30 表八、The Cancer Genome Atlas資料集臨床變項之Cox Regression單變項分析 31 表九、GSE76427資料集臨床變項之Cox Regression單變項分析 32 表十、B-HCC組TILs之Cox Regression單變項與多變項分析 33 表十一、C-HCC組TILs之Cox regression 單變項分析 35 表十二、HCC組TILs之Cox regression單變項分析與多變項分析 36 表十三、在B-HCC、C-HCC和HCC組同樣會影響存活的TILs 38 表十四、參與癌變過程且影響存活之TILs 39 | |
dc.language.iso | zh-TW | |
dc.title | 比較HBV與HCV相關肝癌腫瘤浸潤白血球基因表現與預後關聯之差異 | zh_TW |
dc.title | The Comparison of the Difference Between Association of the Prognostic Landscape and the Gene Expression of Tumor Infiltrating Leukocytes in Hepatitis B- and Hepatitis C-related Hepatocellular Carcinomas | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 施惟量(WEI-LIANG SHIH) | |
dc.contributor.oralexamcommittee | 蕭朱杏(CHUHSING-KATE HSIAO),蕭自宏,林敬恒 | |
dc.subject.keyword | 肝癌,B型肝炎病毒,C型肝炎病毒,腫瘤浸潤白血球,免疫細胞,ESTIMATE,CIBERSORT, | zh_TW |
dc.subject.keyword | Hepatocellular carcinoma,Hepatitis B virus,Hepatitis C virus,Tumor-infiltrating leukocytes,immune cell,ESTIMATE,CIBERSORT, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU201900086 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-01-23 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 公共衛生碩士學位學程 | zh_TW |
顯示於系所單位: | 公共衛生碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。