Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然
dc.contributor.authorTing-Yu Liuen
dc.contributor.author劉廷佑zh_TW
dc.date.accessioned2021-06-17T06:04:03Z-
dc.date.available2029-01-25
dc.date.copyright2019-01-29
dc.date.issued2019
dc.date.submitted2019-01-25
dc.identifier.citation[1] EnergyTrend, Dec. 2017, 2016-2017 年全球太陽能趨勢市場需求預測及變化 [Online]. Available: http://pv.energytrend.com.tw/research/20151211-12805.html
[2] F. A. Lindholm, J. G. Fossum, E. L. Burgess, “Application of the SuperpositionPrinciple to Solar-Cell Analysis”, IEEE Transaction on Election Device, vol. 26, no. 3, pp. 165-171, Mar. 1979
[3] R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Second Edition, Boulder: University of Colorado, 2004
[4] Z. G. Wan, Y. K. Tan, and C. Yuen, “Review on energy harvesting and energy management for sustainable wireless sensor networks,” in Proc. IEEE 13th Int. Conf. Commun. Technol. (ICCT), 2011, pp. 362–367.
[5] A. Richelli, S. Comensoli, and Z. M. Kovács-Vajna, 'A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications', IEEE Transactions on Industrial Electronics, vol. 59, no. 6, pp. 2701-2708, June
2012.
[6] H.-J. Wang et al., 'Low cross regulation voltage-mode controlled single-inductor dual-outputs (SIDO) voltage regulator', IEEE Future Energy Electronics Conference (IFEEC), 2013 1st International, pp. 149-154, Nov. 2013.
[7] M.-H. Huang, and K.-H. Chen, 'Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices', IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, April 2009.
[8] X. Jing, K. T. M. Philip, and M.-C. Lee, 'A wide-load-range constant-charge-autohopping control Single-inductor-dual-output Boost regulator with minimized cross-regulation', IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2350-2362, Oct. 2011.
[9] C.-F. Lee, and K. T. M. Philip, 'A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique', IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[10] M. Du, H. Lee, and J. Liu, 'A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak-and valley-current control', IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1928-1939, Aug. 2011.
[11] D. Jauregui, B. Wang, and R. Chen, 'Power loss calculation with common source inductance consideration for synchronous buck converters', Texas Instruments, SLPA009A, June 2011.
[12] D. Ma, W.-H. Ki, C.-Y. Tsui, K. T. M. Philip, 'Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode', IEEE J. Solid-State Circuits, vol. 38, no. 1 pp. 89-100, Jan. 2003.
[13] H.-P. Le et al., 'A single-inductor switching DC–DC converter with five outputs and ordered power-distributive control', IEEE J. Solid-State Circuits, vol. 42, no. 12 pp. 2706-2714, Dec. 2007.
[14] E. Bonizzoni et al., 'A 200mA 93% peak efficiency single-inductor dual-output DC-DC buck converter', IEEE ISSCC 2007, Digest of Technical Papers, pp.526-527, Feb. 2007.
[15] D. Ma, W.-H. Ki, and C.-Y. Tsui, 'A pseudo-CCM/DCM SIMO switching converter with freewheel switching', IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, June 2003.
[16] S.-C. Koon, Y.-H. Lam and W.-H. Ki, 'Integrated charge-control single-inductor dual-output step-up/step-down converter', Proceedings-IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, pp. 3071-3074, May 2005.
[17] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sep. 2012.
[18] Y.-J. Woo et al., 'Load-independent control of switching dc-dc converters with freewheeling current feedback,' IEEE J. Solid-State Circuits, vol.43, no.12, pp.2798-2808, Dec. 2008.
[19] M.-H. Huang, K.-H. Chen, and W.-H. Wei, 'Single-inductor dual-output DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,' IEEE 2008 Symposium on VLSI Circuits Digest of Technical Paper, 2008.
[20] Y.-H. Lee et al., 'A DVS embedded power management for high efficiency integrated SoC in UWB system,' IEEE Journal of Solid-State Circuits, vol.45, no.11, pp. 2227-2238, Nov. 2010.
[21] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive peak-inductorcurrent controlled PFM boost converter with a near-threshold startup voltage and high efficiency,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1956–1965, May 2014.
[22] Y. Wang and D. Ma, “A 450-mV single-fuel-cell power management unit with switch-mode quasi-V2 hysteretic control and automatic startup on 0.35 μm standard CMOS process,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2216–2226, Sep. 2012.
[23] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, Apr. 2013.
[24] Y. Nakase et al., '0.5 V Start-Up 87% Efficiency 0.75 mm² On-Chip Feed-Forward Single-Inductor Dual-Output (SIDO) Boost DC-DC Converter for Battery and Solar Cell Operation Sensor Network Micro-Computer Integration', IEEE J.
Solid-State Circuits, vol. 48, no. 8, pp. 1933-1942, Aug. 2013.
[25] H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, “A single-inductor switching dc-dc converter with five output and ordered powerdistributive control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
[26] T. Esram, P. L. Chapman, 'Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,' IEEE Transactions on Energy Conversion, vol. 22, Issue: 2, pp. 439 - 449, 2007.
[27] W.-D. Xiao, W. G. Dunford, 'A modified adaptive hill climbing MPPT method for photovoltaic power systems,' IEEE 35th Annual Power Electronics Specialists Conference, 2004. PESC 04. 2004, vol. 3, pp. 1957 - 1963,20-25 Jun. 2004
[28] W.-K. Wu, N. Pongratananukul, W.-H. Qiu, K. Rustom, T. Kasparis, I. Batarseh, “DSP-based multiple peak power tracking for expandable power system,”Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03, vol. I, pp. 525 - 530, 9-13 Feb. 2003.
[29] B. Bekker, H. L. Beukes, “Finding an optimal PV panel maximum power point tracking method, ” 7th AFRICON Conference in Africa, AFRICON, 2004, vol. 2, pp. 1125 - 1129, 15-17 Sep. 2004.
[30] H. Shao, X. Li, C.-Y. Tsui, and W.-H. Ki, “A novel single-inductor dual-input dualoutput DC–DC converter with PWM control for solar energy harvesting system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1693–1704,
Aug. 2014.
[31] P.-H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by
capacitor pass-on scheme and -tuned oscillator with fixed charge programming,”IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012.
[32] S. Kim and G. A. Rincon-Mora, 'Dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control,' ISSCC Dig. Tech. Papers, pp. 400-401, Feb 2014.
[33] K. Rawy, F. Kalathiparambil, D. Maurath, and T.-H. Kim, “A self-adaptive timebased MPPT with 96.2% tracking efficiency and a wide tracking range of 10 μA
to 1 mA for IoT applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 9, pp. 2334–2345, Sep. 2017.
[34] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V input discontinuous-conduction-mode boost converter with CMOS-control rectifier,” IEEE J. SolidState Circuits, vol. 43, no. 9, pp. 2036–2046, Sep. 2008.
[35] Y. K. Ramadass and A. P. Chandrakasan, “A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage,” IEEE J. Solid-State
Circuits, vol. 46, no. 1, pp. 333–341, Jan. 2011.
[36] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sep. 2012.
[37] H.-C. Lin, B.-C. Fung, and T.-Y. Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” in Proc. IEEE Symp. Circuits and Systems, pp. 2602–2605, May 2010
[38] Y.-J. Huang et al., “A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 851–866, Apr. 2014.
[39] J. Lee, “Basic Calculation of a Buck Converter’s Power Stage”, Richtek Technology AN041, Dec. 2015
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71592-
dc.description.abstract本篇論文提出一個針對光電能源擷取之低功耗單電感雙輸出之直流轉直流升壓轉換器以應用在無線感測網路。將太陽能電池(在不同照度下開路電壓在0.95V 至 1.25V 範圍之間)所擷取到的最大功率提供給輸出負載做使用。該轉換器可提供 1.8V 的穩定電壓給後端的類比及數位電路,並同時將多餘的能量儲存在另外一路的儲存電容或 3.7V 鋰電池。本篇論文使用自適應峰值電感電流脈寬頻率調變控制方式,此控制方式可抑制輸出電壓漣波會隨輸入電壓增加而增加的現象。此外,本篇論文亦使用二階段啟動方式來節省晶片面積以適用在單系統晶片的應用。透過所提的啟動機制,啟動時間可大幅縮短至 10 毫秒以下。此電路在量測上最高可達到 78%的轉換效率、同時搭配一開路電壓法的最大功率點追蹤電路(MPPT)來獲取最多之光能源,可達到最大功率點的追蹤效率高於 99%。此晶片是以聯華電子公司零點一八微米互補式金氧半製程來實現,並且晶片面積僅1.4 mm2,切換頻率為 10-20KHz。zh_TW
dc.description.abstractA solar-powered on-chip low-power single-inductor dual-output (SIDO) DC-DC boost converter was implemented for a wireless sensor node system. It manages power from a photovoltaic (PV) cell with open voltage from 0.95 V-1.25 V under different lux.The converter provides regulated 1.8 V output for the analog and digital circuits while storing the excess energy in a storage capacitor or 3.7 V Li-on battery (VSTOR). The adaptive-peak-inductor-current (APIC) control method is used to mitigate the output voltage ripple variation issue at different input voltage. Besides, a two-step startup procedure is proposed to reduce the chip area for SoC application. By the proposed startup mechanism, the start-up time could be shorten to under 10 milliseconds. A fractional open circuit voltage (FOCV) algorithm was implemented as a maximum power point tracking (MPPT) control. With this MPPT control, its peak tracking efficiency can be higher than 99%. The measurement result of the boost converter achieves a peak efficiency of 78%. The chip is implemented by UMC 1P6M 0.18μm process technology with a small area size of just 1.4 mm2, and the switching frequency is 10-20 KHz.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:04:03Z (GMT). No. of bitstreams: 1
ntu-108-R05943105-1.pdf: 2626077 bytes, checksum: 1a0fa09437046ad3c74d722ad2d82418 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝.................................................................................................................................i
中文摘要........................................................................................................................ii
ABSTRACT................................................................................................................ iii
Table of Contents........................................................................................................iv
Lists of Figures......................................................................................................... viii
Lists of Tables.............................................................................................................xii
Chapter 1 Introduction..........................................................................................1
1.1 Motivation..............................................................................................1
1.2 Thesis Organization ...............................................................................3
Chapter 2 Review of Photovoltaic Energy Harvesting and Boost Converter 5
2.1 Introduction to the Energy Harvesting from a Photovoltaic Cell ..........5
2.2 System Architecture of Boost Converter for Photovoltaic Energy
Harvesting ...........................................................................................8
2.3 Inductor-based switching DC-DC Converter.......................................10
2.4 Basics of Switching DC-DC Boost Converter.....................................11
2.4.1 The Principle of Inductor Volt-second Balance...........................12
2.4.2 The Principle of Capacitor Charge Balance.................................12
2.4.3 Fundamentals of Operation..........................................................13
2.4.3.2 Discontinuous Conduction Mode (DCM).............................17
2.4.4 Closed-loop Control Mechanisms................................................19
2.4.4.1 Pulse-Width Modulation (PWM)..........................................20
2.4.4.2 Pulse-Frequency Modulation (PFM) ....................................21
2.4.5 Control Scheme Classification by Feedback Signals...................22
2.4.5.1 Voltage-Mode Control ..........................................................22
2.4.5.2 Current-Mode Control ..........................................................23
2.5 Significant Parameters of DC-DC Converter ......................................25
2.5.1 Line Regulation............................................................................25
2.5.2 Load Regulation...........................................................................26
2.5.3 Transient Response ......................................................................26
2.5.4 Power Loss and Conversion Efficiency.......................................28
2.5.5 Switching Loss and Conduction loss...........................................29
2.6 Multiple-Output Switching DC-DC Converter....................................30
2.6.1 Cross Regulation..........................................................................32
2.7 Summary and Conclusions ..................................................................33
Chapter 3 CMOS Implementation of the Boost Converter for Photovoltaic
Energy Harvesting ...........................................................................35
3.1 System Architecture of the Boost Converter for Photovoltaic Energy
Harvesting ..............................................................................................................36
3.2 Specification of the Boost Converter...................................................37
3.2.1 Power Consumption of the Loading Sub-Blocks.........................37
3.2.2 Specification of the Proposed Boost Converter...........................38
3.3 Implemented Adaptive-Peak-Inductor-Current Controlled SingleInductor Dual-Output (SIDO) DC-DC Boost Converter.....................41
3.3.1 Adaptive-Peak-Inductor-Current Control Method.......................44
3.3.2 DCM Detector..............................................................................48
3.3.3 SIDO Control Circuit...................................................................50
3.3.4 Two-step Start-up Procedure .......................................................52
3.3.5 Voltage Detector and High Voltage Selector...............................54
3.3.6 Auto Body Selector (ABS) ..........................................................56
3.4 Maximum Power Point Tracking (MPPT)...............................................58
3.4.1 Review of MPPT method.................................................................58
3.4.2 Implementation of FOCV MPPT.....................................................60
3.4.3 The Method of Estimating Input Capacitor to optimize MPP
Tracking Efficiency .........................................................................63
3.4.4 Simulation Results...........................................................................65
3.5 Summary and Conclusions ......................................................................66
Chapter 4 Measurement Results.........................................................................69
4.1 Two-step Start-up Procedure ...............................................................71
4.2 Steady State Operation.........................................................................72
4.3 Comparison of Output Voltage Ripple with Simulation Results.........76
Chapter 5 Conclusion and Future Work .........................................................79
References...................................................................................................................81
dc.language.isoen
dc.title應用於光電能量擷取且具最大功率追蹤之單電感雙輸出升壓轉換器zh_TW
dc.titleSingle-Inductor Dual-Output Boost Converter with MPPT for Photovoltaic Energy Harvestingen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林宗賢,彭盛裕,陳耀銘
dc.subject.keyword光能擷取,單電感雙輸出升壓轉換器,自適應峰值電感電流控制,二階段啟動機制,低功耗,zh_TW
dc.subject.keywordPhotovoltaic energy harvesting,SIDO DC-DC boost converter,Adaptive-peak-inductor-current (APIC) control,Two-step start-up mechanism,low power.,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201900212
dc.rights.note有償授權
dc.date.accepted2019-01-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
2.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved