Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71584
標題: 在生物體內的傳輸現象. 直接耦合方法求解流固耦合問題.
Transport in biological systems. Monolithic method for fluid–structure interaction
作者: Chen-Yu Chiang
蔣承佑
指導教授: 許文翰
共同指導教授: Marc Thiriet
關鍵字: 血流,尤拉耦合方法,流固耦合,有限元素法,靜脈瓣膜,
blood flow,eulerian monolithic formulation,fluid-structure interaction,hyperelastic model,Mooney-Rivlin model,StVenant-Kirchhoff model,finite element method,FreeFem++ solver,valved veins,
出版年 : 2019
學位: 博士
摘要: The present work aims at developing a numerical solver for fluid–structure interac- tion (FSI) problems, especially those encountered in biology such as blood circulation in valved veins. Blood flow is investigated using anatomically and physically relevant models.
Computational procedures are conceived, designed, and implemented in a platform that couples the cheapest cost and the fastest processing using high-performance comput- ing.
The first aspect of FSI problems is related to management of algorithm stability. An Eulerian monolithic formulation based on the characteristic method unconditionally achieves stability and introduce a first order in time approximation with two distinct hy- perelastic material models.
The second aspect deals with between-solid domain contact such as that between valve leaflets during closure and in the closed state over a finite surface, which avoid vcusp tilting and back flow. A contact algorithm is proposed and validated using benchmarks.
Computational study of blood flow in valved veins is investigated, once the solver was verified and validated. The 2D computational domain comprises a single basic unit or the ladder-like model of a deep and superficial veins communicating by a set of perforating veins. A 3D mesh of the basic unit was also built. Three-dimensional computation relies on high performance computing.
Blood that contains cells and plasma is a priori a heterogeneous medium. However, it can be assumed homogeneous in large blood vessels, targets of the present study. Red blood capsules that represent the vast majority of blood cells (97%) can deform and aggregate, influencing blood rheology. However, in large veins, in the absence of stagnant flow regions, blood behaves as a Newtonian fluid.
Blood flow dynamics is strongly coupled to vessel wall mechanics. Deformable vascular walls of large veins and arteries are composed of three main layers (intima, media, and adventitia) that consist of composite material with a composition specific to each layer. In the present work, the wall rheology is assumed to be a Mooney–Rivlin material.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71584
DOI: 10.6342/NTU201900210
全文授權: 有償授權
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
26.29 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved