請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71554完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉(YAN-WEI JIANG) | |
| dc.contributor.author | Wei-Yang Weng | en |
| dc.contributor.author | 翁維陽 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:03:08Z | - |
| dc.date.available | 2022-02-13 | |
| dc.date.copyright | 2019-02-13 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-28 | |
| dc.identifier.citation | Book.
[1] H. Morkoç, Nitride Semiconductors and Devices, Springer, 1999. [2] Transmission Electron Microscopy:A Textbook Material Science(4 Vol set) Conference Paper [3] V. C. Su, P. H. Chen, M. L. Lee, Y. H. You, C. J. Hsieh, C. H. Kuan, Y. C. Chen, H.C. Lin, H. B. Yang, R. M. Lin, Q. Y. Lee, and F. C. Chu, “Investigation of nano- sized hole/post patterned sapphire substrates-induced strain-related quantum- confined stark effect of InGaN-based light-emitting diodes,” in CLEO: 2013, OSA Technical Digest (online), paper JW2A.84. [4] P. H. Chen, V. C. Su, Y. H. You, M. L. Lee, C. J. Hsieh, C. H. Kuan, H. M. Chen,H. B. Yang, H. C. Lin, R. M. Lin, F. C. Chu, and G. Y. Su, “The analysis of nano- pat-terned sapphire substrates-induced compressive strain to enhance quantum- confined stark effect of InGaN-based light-emitting diodes,” in CLEO: 2013, OSA Technical Digest (online), paper CM4F.8. [5] M. L. Lee, Y. H. You, R. M. Lin, C. J. Hsieh, V. C. Su, P. H. Chen, and C. H. Kuan,Utilizing two dimensional photonic crystals to study the relation between the air duty cycle and the light extraction efficiency of InGaN-based Light-Emitting Diodes,” in IEEE Nanotechnology Conference, pp. 254-257, 2013. Journal Articles [6] Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441,325-328(2006). [7] Khan, M. A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84(2008). [8] Shur, M. S. & Gaska, R. Deep-Ultraviolet Light-Emitting Diodes. IEEE Transac-tions on Electron Devices 57(1), 12–25 (2010). [9] Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036(2011). [10] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Ka-miyama, H. Amano, I.Akasaki, T. Noro, T. Takagi, and A. Bandoh, Jpn.” Influence of High Temperature in the Growth of Low Dislocation Content AlN Bridge Layers on Patterned 6H-SiC Substrates by Metalorganic Vapor Phase Epitaxy” J. Appl. Phys. 45, 8639 (2006). [11] H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata,” High-quality AlN film grown on a nanosized concave–convex surface sapphire sub-strate by metalorganic vapor phase epitaxy” Phys. Status Solidi C 6, S356 (2009). [12] H. Hirayama, Y. Tomita, S. Toyoda, S. Fujikawa, and N. Kamata, Proc. Conference on Lasers and Electro-Optics Pacific Rim, Kyoto, Japan, W H2-2 (2013). [13] P. Dong, J. Yan, J.Wang, Y. Zhang, C.Geng, T. Wie, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin,” Light extraction enhancement of AlGaNbased ultraviolet light-emitting diodes by substrate sidewall roughening” Appl. Phys. Lett. 102, 241113 (2013). [14] L.-X. Zhao, Z.-G. Yu, B. Sun, S.-C. Zhu, P.-B. An, C. Yang, L. Liu, J.-X. Wang, and J.-M. Li,” Progress and prospects of GaN-based LEDs using nanostructures” Chin. Phys. B 24, 068506 (2015). [15] Y. H. You, V. C. Su, T. E. Ho, B. W. Lin, M. L. Lee, A. Das, W. C. Hsu, C. H. Kuan,and R. M. Lin, “Influence of patterned sapphire substrates with different symmetry on the light output power of InGaN-based LEDs” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1-8, 2014. [16] M. Conroy, V. Z. Zubialevich, H. Li, N. Petkov, J. D.Holmes, and P. J. Parbrook, J. Mater.,” Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods” Chem. C 3, 431 (2015). [17] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, C.C. Kao, 'Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates,' Photo. Tech. Lett., IEEE , vol. 20, no. 13, pp. 1193-1195, Jul. 2008. [18] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G. Wang, “Improvement of the perfor-mance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching,” Solid-State Electronics, vol. 52, no. 6, pp. 962-967, Jun. 2008. [19] R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, D. S. Wuu, ”Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on pat-terned sapphire substrates,” Journal of crystal growth, vol. 298, pp. 219-222, Jan. 2007. [20] H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho, K. H. Park, ”Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,. ” Journal of Crystal Growth, vol. 311, pp. 4167–4170, Aug. 2009. [21] Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, ”GaN-based blue light-emitting di-odes grown and fabricated on patterned sapphire substrates by metalorganic va-por-phase epitaxy,” Journal of Crystal Growth, vol. 272, pp.327–332, Dec. 2004. [22] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, R. C. Gonzalez, R. E. Woods, “Nonpolar InGaN/GaN emitters on re-duced-defect lateral epitaxially overgrown a-plane GaN with drive-current- inde-pendent electroluminescence emission peak,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5143, Dec.(2004). [23] Xiao-Hui Huang, Jian-Ping Liu, Jun-Jie Kong, Hui Yang and Huai-Bing Wang,” High-efficiency InGaN-based LEDs grown on patterned sapphire substrates,”Optics Express Vol. 19, Issue S4, pp. A949-A955 (2011). [24] Hung-Cheng Lina, Hsueh-Hsing Liua, Geng-Yen Leea, Jen-Inn Chyia,Chang-Ming Lud, Chih-Wei Chaod, Te-Chung Wangd, Chun-Jong Changd andSolomon W. S. Chid,” Effects of Lens Shape on GaN Grown on Microlens Patterned Sapphire Sub-strates by Metallorganic Chemical Vapor Deposition,”J.Electrochem. Soc. 157(3), H304-H307(2010). [25] Xiao-Hui Huang, Jian-Ping Liu, Ya-Ying Fan, Jun-Jie Kong, Hui Yang, and Huai-Bing Wang,” Effect of Patterned Sapphire Substrate Shape on Light Output Power of GaN-Based LEDs,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 14, JULY 15, (2011). [26] Scott A. Newman, , Derrick S. Kamber, , Troy J. Baker, , Yuan Wu, , Feng Wu, , Zhen Chen, , Shuji Namakura, , James S. Speck, and , and Steven P. DenBaars,” Lateral epitaxial overgrowth of (0001) AlN on patterned sapphire using hydride vapor phase epitaxy,” Appl. Phys. Lett. 94, 121906; doi:10.1063/1.3089253(2009) [27] Sylvia Hagedorn*, Arne Knauer, Anna Mogilatenko, Eberhard Richter, and Markus Weyers,” AlN growth on nano-patterned sapphire: A route for cost efficient pseudo substrates for deep UV LEDs,” Phys. Status Solidi A 213, No. 12, 3178–3185 / DOI 10.1002/pssa.201600218(2016). [28] Lisheng Zhang1, Fujun Xu1, Jiaming Wang1, Chenguang He1, Weiwei Guo1, Mingxing Wang1,Bowen Sheng1, Lin Lu2, Zhixin Qin1, Xinqiang Wang1,3 & Bo Shen1,3,” High-quality AlN epitaxy on nanopatterned sapphire substrates prepared bynano-imprintlithography,” Scientific Reports volume6, Article number: 35934 (2016). [29] Binh Tinh Tran, Hideki Hirayama, Noritoshi Maeda, Masafumi Jo, Shiro Toyoda &Norihiko Kamata,” Direct Growth and Controlled Coalescence of Thick AlN Templateon Micro-circle Patterned Si Substrate,” Scientific Reports volume5, Arti-cle number: 14734 (2015). [30] James H. Edgar and W. J. Meng, “Properties of Group Ⅲ Nitrides”, (1993). [31] Bernard Gil and Fernando A. Ponce: “Group Ⅲ Nitride Semiconductor Compounds Physics and Applications”, (1998). [32] A. Rubio, J.L. Corkill, M.L. Cohen, E.L. Shirley and S.G. Louie, “ Quasiparticle band structure of AlN and GaN”, Phys.Rev. B, Vol. 48, P.11810, (1993). [33] Xinqiang Wang, Akihiko Yoshikawa, “Molecular beam epitaxy growth of GaN,AlN and InN”, Progress in Crystal Growth and Characterization of Materials Volumes 48–49, Pages 42–103, (2004). [34] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos, and M.Razeghi,” A crystallo-graphic model of (001) aluminum nitride epitaxial thin film growth on(001) sapphire substrate”, Journal of Applied Physics 75, 3964 (1994). [35] A. Saxler, P. Kung, C. J. Sun, E. Bigan, and M. Razeghi,” High quality aluminum nitride epitaxial layers grown on sapphire substrates”, Appl. Phys. Lett. 64, 339 (1994). [36] J. A. Sanjurjo, E. López-Cruz, P. Vogl, and M. Cardona,” Dependence on volume of the phonon frequencies and the ir effective charges of several III-V semiconduc-tors” Phys.Rev. B 28, 4579 (1983). [37] P. Perlin, A. Polian, and T. Suski, “Raman-scattering studies of aluminum nitride at high pressure”Phys. Rev. B 47, 2874 (1993). [38] M. Kuball, J. M. Hayes, A. D. Prins, N. W. A. van Uden, D. J.Dunstan, Y. Shi, and J. H. Edgar, “Raman scattering studies on single-crystalline bulk AlN under high pressures”Appl. Phys. Lett. 78, 724 (2001). [39] M. Kuball, J. M. Hayes, Y. Shi, J. H. Edgar, A. D. Prins, N. W.A. van Uden, and D. J. Dunstan,” Raman scattering studies on single-crystalline bulk AlN: temperature and pressure dependence of the AlN phonon modes” J. Cryst.Growth 231, 391(2001). [40] A. R. Goñi, H. Siegle, K. Syassen, C. Thomsen, and J.-M. Wagner,Phys. ,” Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN”Rev. B 64, 035205 (2001). [41] E. V. Yakovenko, M. Gauthier, and A. Polian,” High-pressure Raman scattering in wurtzite indium nitride” JETP 98, 981(2004). [42] I. Gorczyca, N. E. Christensen, E. L. Peltzer y Blancá, and C. O.Rodríguez,” Temperature dependence of Raman scattering in hexagonal gallium nitride films” Phys. Rev. B 51, 11936 (1995). [43] J.-M. Wagner and F. Bechstedt,” Pressure dependence of the dielectric and lat-tice-dynamical properties of GaN and AlN” Phys. Rev. B 62, 4526 (2000). [44] Francisco Javier Manjón, Daniel Errandonea, Aldo Humberto Romero, Núria Garro, Jorge Serrano, Martin Kuball,” Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type sem-iconductors”, PHYSICAL REVIEW B 77, 205204 (2008). [45] Imura, M. et al. “Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers”. J. Cryst. Growth 298, 257–260 (2007). [46] Zeimer, U. et al.” High quality AlGaN grown on ELO AlN/sapphire tem-plates”. J. Cryst. Growth 377, 32–36 (2013). [47] Kueller, V. et al.” Growth of AlGaN and AlN on patterned AlN/sapphire templates.” J. Cryst. Growth 315, 200–203 (2011). [48] Mogilatenko, A. et al. “Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth.” J. Cryst. Growth 402, 222–229 (2014). [49] Mei, J., Ponce, F. A., Fareed, R. S. Q., Yang, J. W. & Khan, M. A.”Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shal-low-grooved sapphire substrates.” Appl. Phys. Lett. 90, 221909 (2007). [50] T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J. S. Speck,”The role of high-temperature island coalescence in the development of stresses in GaN films “, Appl. Phys. Lett. 78, 1976 doi: 10.1063/1.1359780( 2001). [51] LishengZhang1, FujunXu1, JiamingWang1, Chenguang He1, WeiweiGuo1, MingxingWang1, Bowen Sheng1, Lin Lu2, ZhixinQin1, XinqiangWang1,3 & Bo Shen1,3” High-quality AlN epitaxy on nanopatterned sapphire substrates prepared by nano-imprint lithography”, Scientific Reports volume6, Article number: 35934 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71554 | - |
| dc.description.abstract | 在氮化鋁薄膜磊晶中使用圖案化藍寶石基板(Patterned Sapphire Substrates, PSSs)可以減少穿隧差排密度(Threading Dislocation Density)以增加磊晶品質,以及降低缺陷密度(defect density)。由於業界量產微米尺寸圖案化藍寶石基板,使氮化鋁於成長時所需聚合的厚度較高(8~12um)。我們利用電子束微影技術與濕蝕刻技術,製作出奈米尺寸圖案化藍寶石基板,並成功用3um的厚度達到聚合,並使缺陷密度從 3.25x10^9 cm^(-2) 下降到 4.8x10^8 cm^(-2)。
在最後的階段,我們透過拉曼量測成長於不同週期和頂部c-plane大小的圖案化藍寶石基板的氮化鋁,並以半高寬和所受之殘餘應力為主體提出氮化鋁磊晶機制模型,透過表面與側面SEM,AFM,TEM,晶粒大小,與文獻參考加以驗證,提升可信度。 | zh_TW |
| dc.description.abstract | Using a patterned sapphire substrate(PSSs) in the Aluminum nitride thin film can reduce the threading dislocation density and increase the crystal quality, and reduce the defect density. Due to the size of commercial patterned sapphire substrate is micronmeter, the coalescence thickness will be higher approximately 8 to 12 micronmeter. We used ebeam lithgrophy and wet-etching technology to fabricate nano-PSS and successfully growth the 3um AlN thin film which already coalescence and reduce defect density from 3.25x〖10〗^9 〖cm〗^(-2) to 4.8x〖10〗^8 〖cm〗^(-2).
At the final stage, we used raman system to analyze AlN which growth on patterned sapphire with the change between top c-plane size and period.Accroding the result of FWHM and residual stress, we establish the growth mechanism model of AlN.Finally we prove it with SEM,AFM,TEM. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:03:08Z (GMT). No. of bitstreams: 1 ntu-108-R05941094-1.pdf: 5656654 bytes, checksum: 6df2a525545f514b9943dbeded232694 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Forewod……………………………………………………………………..1 1.2 Research Motivation 2 1.3 Thesis structure 3 Chapter 2 Theoretic and material analysis 4 2.1 Introduction to Sapphire Substrate 4 2.2 Patterned Sapphire Substrates 7 2.3 The etching theory of Sapphire 8 2.3.1 Etching type 8 2.3.2 Wet etching theory 9 2.4 Introduction to Aluminum 10 2.5 Strain in AlN 12 2.6 Dislocation in AlN 15 2.7 Phonon dispersion and Raman scattering in hexagonal AlN 17 2.7.1 Raman spectrum selection rule 18 Chapter 3 Experiment equipment and sample preparation 20 3.1 Ebeam lithography 20 3.2 Electron gun evaporation system (E-gun) 22 3.3 Inductively Coupled Plasma – Reactive Ion Etching(ICP-RIE) 23 3.4 Scanning Eletron Microscopy(SEM) 24 3.5 Metal –Organic Chemical Vapor Deposition(MOCVD) 26 3.6 Raman spectroscopy(µ-Raman) 27 3.7 Atomic force microscope(AFM) 29 3.8 Transmission Electron Microscopy(TEM) 31 3.9 PSS Sample preparation 34 3.10 TEM Specimen preparation 38 3.11 Experimental design 42 3.11.1 Foreword 42 3.11.2 Pattern Sapphire Substrate design by wet etching methods 43 3.12 Experiment analysis flow 46 3.13 Measurement of part I: Surface profile on AlN 47 3.14 Measurement of part II: Crossection profile on AlN 49 3.15 Measurement of part III: Grain size and Rrms of AFM analysis on AlN 50 3.15.1 Determination of grain size diameter 50 3.15.2 Relations between grain size and Rrms on AlN by different PSS 52 3.16 Measurement of part IV: Strain in AlN and epitaxial quality analysis 56 3.16.1 Compare Raman shift to FWHM by different PSS design 56 3.16.2 Model building of AlN epitaxial mechanism base on Raman spectroscopy 58 3.17 Model of epitaxial mechanism 61 3.17.1 Forword 61 3.17.2 Model verification in region I 61 3.17.3 Model verification in region II 65 3.17.4 Model verification in region III 68 3.17.5 Summary 72 Chapter 4 Conclusion & Future work 74 Reference 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電子束微影 | zh_TW |
| dc.subject | 圖案化藍寶石基板 | zh_TW |
| dc.subject | 氮化鋁 | zh_TW |
| dc.subject | 濕式蝕刻 | zh_TW |
| dc.subject | 穿隧差排 | zh_TW |
| dc.subject | Patterned Sapphire Substrate | en |
| dc.subject | AlN | en |
| dc.subject | PSS | en |
| dc.subject | Threading dislocation | en |
| dc.subject | Electron-Beam Lithography | en |
| dc.subject | Wet Etching | en |
| dc.title | 藉由不同週期性藍寶石基板成長氮化鋁並探討其成長機制和材料特性 | zh_TW |
| dc.title | Growth mechanism and performance of AlN fabricated by dif-ferent periodic pattern sapphire substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 管傑雄(Chieh-Hsiung Kuan) | |
| dc.contributor.oralexamcommittee | 孫建文(JIAN-WEN SUN),孫允武(YUN-WU SUN),藍彥文(YAN-WEN LAN),蘇文生(WEN-SHENG SU) | |
| dc.subject.keyword | 氮化鋁,圖案化藍寶石基板,濕式蝕刻,電子束微影,穿隧差排, | zh_TW |
| dc.subject.keyword | AlN,Patterned Sapphire Substrate, Wet Etching,Electron-Beam Lithography,Threading dislocation,PSS, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201900227 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
