Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝(Feng-Huei Lin)
dc.contributor.authorChun-Ting Yangen
dc.contributor.author楊俊廷zh_TW
dc.date.accessioned2021-06-17T06:03:07Z-
dc.date.available2022-01-30
dc.date.copyright2019-01-30
dc.date.issued2018
dc.date.submitted2019-01-28
dc.identifier.citation[1] Cancer, 2018. http://www.who.int/news-room/fact-sheets/detail/cancer.
[2] J. Gaworek, C.T. Mayer, [Systemic whole body hyperthermia in oncology: fatal heat for tumor cells], Pflege Z 56(1) (2003) 15-8.
[3] M.H. Falk, R.D. Issels, Hyperthermia in oncology, Int J Hyperthermia 17(1) (2001) 1-18.
[4] N. Cihoric, A. Tsikkinis, G. van Rhoon, H. Crezee, D.M. Aebersold, S. Bodis, M. Beck, J. Nadobny, V. Budach, P. Wust, P. Ghadjar, Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry, Int J Hyperthermia 31(6) (2015) 609-14.
[5] M.D. Hurwitz, I.D. Kaplan, J.L. Hansen, S. Prokopios-Davos, G.P. Topulos, K. Wishnow, J. Manola, B.A. Bornstein, K. Hynynen, Hyperthermia combined with radiation in treatment of locally advanced prostate cancer is associated with a favorable toxicity profile, Int J Radiat Oncol 63(2) (2005) S325-S325.
[6] K. Hynynen, B.A. Lulu, Hyperthermia in Cancer-Treatment, Invest Radiol 25(7) (1990) 824-834.
[7] L.W. Brady, Combined Treatment Techniques in Head and Neck Cancer - Radiation-Therapy, Chemotherapy and Hyperthermia, Laryngoscope 88(1) (1978) 68-74.
[8] N. van den Tempel, M.R. Horsman, R. Kanaar, Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms, Int J Hyperther 32(4) (2016) 446-454.
[9] A. Chicheł, J. Skowronek, M. Kubaszewska, M. Kanikowski, Hyperthermia–description of a method and a review of clinical applications, Reports of Practical Oncology & Radiotherapy 12(5) (2007) 267-275.
[10] P. Moroz, S.K. Jones, B.N. Gray, Magnetically mediated hyperthermia: current status and future directions, Int J Hyperthermia 18(4) (2002) 267-84.
[11] B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia, Crit Rev Oncol Hemat 43(1) (2002) 33-56.
[12] K. Sekihara, N. Harashima, M. Tongu, Y. Tamaki, N. Uchida, T. Inomata, M. Harada, Pifithrin-mu, an Inhibitor of Heat-Shock Protein 70, Can Increase the Antitumor Effects of Hyperthermia Against Human Prostate Cancer Cells, Plos One 8(11) (2013).
[13] X.B. Cui, Z.Y. Yu, W. Wang, Y.Q. Zheng, W. Liu, L.X. Li, Co-Inhibition of HSP70/HSP90 Synergistically Sensitizes Nasopharyngeal Carcinoma Cells to Thermotherapy, Integr Cancer Ther 11(1) (2012) 61-67.
[14] P. Carmeliet, R.K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nat Rev Drug Discov 10(6) (2011) 417-27.
[15] A. Reinacher-Schick, M. Pohl, W. Schmiegel, Drug insight: antiangiogenic therapies for gastrointestinal cancers--focus on monoclonal antibodies, Nat Clin Pract Gastroenterol Hepatol 5(5) (2008) 250-67.
[16] J.F.R. Kerr, C.M. Winterford, B.V. Harmon, Apoptosis - Its Significance in Cancer and Cancer-Therapy, Cancer 73(8) (1994) 2013-2026.
[17] A. Natarajan, C. Gruettner, R. Ivkov, G.L. DeNardo, G. Mirick, A. Yuan, A. Foreman, S.J. DeNardo, NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics, Bioconjug Chem 19(6) (2008) 1211-8.
[18] D.E. Bordelon, R.C. Goldstein, V.S. Nemkov, A. Kumar, J.K. Jackowski, T.L. DeWeese, R. Ivkov, Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications, Ieee T Magn 48(1) (2012) 47-52.
[19] G.T. Landi, A.F. Bakuzis, On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime, J Appl Phys 111(8) (2012).
[20] C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Gruttner, R. Ivkov, Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia, Nanotechnology 20(39) (2009).
[21] A.J. Giustini, R. Ivkov, P.J. Hoopes, Magnetic nanoparticle biodistribution following intratumoral administration, Nanotechnology 22(34) (2011).
[22] M. Hedayati, O. Thomas, B. Abubaker-Sharif, H.M. Zhou, C. Cornejo, Y.G. Zhang, M. Wabler, J. Mihalic, C. Gruettner, F. Westphal, A. Geyh, T.L. Deweese, R. Ivkov, The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?, Nanomedicine-Uk 8(1) (2013) 29-41.
[23] L.C. Branquinho, M.S. Carriao, A.S. Costa, N. Zufelato, M.H. Sousa, R. Miotto, R. Ivkov, A.F. Bakuzis, Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia (vol 3, 2887, 2013), Sci Rep-Uk 4 (2014).
[24] M. Wabler, W.L. Zhu, M. Hedayati, A. Attaluri, H.M. Zhou, J. Mihalic, A. Geyh, T.L. DeWeese, R. Ivkov, D. Artemov, Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content, Int J Hyperther 30(3) (2014) 192-200.
[25] A. Attaluri, K. Kandala, M. Wabler, H.M. Zhou, C. Cornejo, M. Armour, M. Hedayati, Y.G. Zhang, T.L. DeWeese, C. Herman, R. Ivkov, Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer, Int J Hyperther 31(4) (2015) 359-374.
[26] C.L. Dennis, K.L. Krycka, J.A. Borchers, R.D. Desautels, J. van Lierop, N.F. Huls, A.J. Jackson, C. Gruettner, R. Ivkov, Internal Magnetic Structure of Nanoparticles Dominates Time-Dependent Relaxation Processes in a Magnetic Field, Adv Funct Mater 25(27) (2015) 4300-4311.
[27] D.E. Bordelon, C. Cornejo, C. Gruttner, F. Westphal, T.L. DeWeese, R. Ivkov, Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, J Appl Phys 109(12) (2011).
[28] A. Kumar, A. Attaluri, R. Mallipudi, C. Cornejo, D. Bordelon, M. Armour, K. Morua, T.L. Deweese, R. Ivkov, Method to reduce non-specific tissue heating of small animals in solenoid coils, Int J Hyperther 29(2) (2013) 106-120.
[29] V. Nemkov, R. Ruffini, R. Goldstein, J. Jackowski, T.L. DeWeese, R. Ivkov, Magnetic field generating inductor for cancer hyperthermia research, Compel 30(5) (2011) 1626-1636.
[30] E. Alleva, D. Santucci, Guide for the care and use of laboratory animals., Ethology 103(12) (1997) 1072-1073.
[31] F. Soetaert, S.K. Kandala, A. Bakuzis, R. Ivkov, Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Sci Rep-Uk 7 (2017).
[32] G.L. Johnson, R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science 298(5600) (2002) 1911-1912.
[33] X.S. Wang, K. Diener, C.L. Manthey, S.-w. Wang, B. Rosenzweig, J. Bray, J. Delaney, C.N. Cole, P.-Y. Chan-Hui, N. Mantlo, Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase, J Biol Chem 272(38) (1997) 23668-23674.
[34] T.M. Thornton, M. Rincon, Non-classical p38 map kinase functions: cell cycle checkpoints and survival, International journal of biological sciences 5(1) (2009) 44.
[35] A. Mikhailov, M. Shinohara, C.L. Rieder, Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway, The Journal of cell biology 166(4) (2004) 517-526.
[36] H. Enslen, J. Raingeaud, R.J. Davis, Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6, J Biol Chem 273(3) (1998) 1741-1748.
[37] K. Noguchi, C. Kitanaka, H. Yamana, A. Kokubu, T. Mochizuki, Y. Kuchino, Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase, J Biol Chem 274(46) (1999) 32580-32587.
[38] T.M. Thornton, G. Pedraza-Alva, B. Deng, C.D. Wood, A. Aronshtam, J.L. Clements, G. Sabio, R.J. Davis, D.E. Matthews, B. Doble, Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation, Science 320(5876) (2008) 667-670.
[39] N.M. Weir, K. Selvendiran, V.K. Kutala, L. Tong, S. Vishwanath, M. Rajaram, S. Tridandapani, S. Anant, P. Kuppusamy, Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK, Cancer biology & therapy 6(2) (2007) 178-184.
[40] J.-L. Perfettini, M. Castedo, R. Nardacci, F. Ciccosanti, P. Boya, T. Roumier, N. Larochette, M. Piacentini, G. Kroemer, Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope, Journal of Experimental Medicine 201(2) (2005) 279-289.
[41] K. Ito, A. Hirao, F. Arai, K. Takubo, S. Matsuoka, K. Miyamoto, M. Ohmura, K. Naka, K. Hosokawa, Y. Ikeda, Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells, Nature medicine 12(4) (2006) 446.
[42] P.J. McKinnon, ATM and the molecular pathogenesis of ataxia telangiectasia, Annual Review of Pathology: Mechanisms of Disease 7 (2012) 303-321.
[43] K. Savitsky, A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D.A. Tagle, S. Smith, T. Uziel, S. Sfez, A single ataxia telangiectasia gene with a product similar to PI-3 kinase, Science 268(5218) (1995) 1749-1753.
[44] P.J. McKinnon, ATM and ataxia telangiectasia: second in molecular medicine review series, EMBO reports 5(8) (2004) 772-776.
[45] D.C. van Gent, J.H. Hoeijmakers, R. Kanaar, Chromosomal stability and the DNA double-stranded break connection, Nature Reviews Genetics 2(3) (2001) 196.
[46] W.S. Joo, P.D. Jeffrey, S.B. Cantor, M.S. Finnin, D.M. Livingston, N.P. Pavletich, Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure, Genes & development 16(5) (2002) 583-593.
[47] C.-X. Deng, BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution, Nucleic acids research 34(5) (2006) 1416-1426.
[48] A.H. Klopp, A. Jhingran, L. Ramdas, M.D. Story, R.R. Broadus, K.H. Lu, P.J. Eifel, T.A. Buchholz, Gene expression changes in cervical squamous cell carcinoma after initiation of chemoradiation and correlation with clinical outcome, International Journal of Radiation Oncology* Biology* Physics 71(1) (2008) 226-236.
[49] R. E Tamura, J. F de Vasconcellos, D. Sarkar, T. A Libermann, P. B Fisher, L. F Zerbini, GADD45 proteins: central players in tumorigenesis, Current molecular medicine 12(5) (2012) 634-651.
[50] A. Cretu, X. Sha, J. Tront, B. Hoffman, D.A. Liebermann, Stress sensor Gadd45 genes as therapeutic targets in cancer, Cancer therapy 7(A) (2009) 268.
[51] T. Maeda, A.N. Hanna, A.B. Sim, P.P. Chua, M.T. Chong, V.A. Tron, GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure, J Invest Dermatol 119(1) (2002) 22-26.
[52] M. Vairapandi, A.G. Balliet, B. Hoffman, D.A. Liebermann, GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress, Journal of cellular physiology 192(3) (2002) 327-338.
[53] M.B. Kastan, Q. Zhan, W.S. El-Deiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein, A.J. Fornace Jr, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71(4) (1992) 587-597.
[54] D.A. Liebermann, B. Hoffman, Gadd45 in stress signaling, Journal of molecular signaling 3(1) (2008) 15.
[55] I. Andreu, E. Natividad, Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia, Int J Hyperthermia 29(8) (2013) 739-51.
[56] O. Kutuk, N. Aytan, B. Karakas, A.G. Kurt, U. Acikbas, S.G. Temel, H. Basaga, Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells, Plos One 12(8) (2017).
[57] H.K. Koul, Role of p38 MAP kinase signal transduction in apoptosis and survival of renal epithelial cells, Ann Ny Acad Sci 1010 (2003) 62-65.
[58] A. Plotnikov, E. Zehorai, S. Procaccia, R. Seger, The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation, Bba-Mol Cell Res 1813(9) (2011) 1619-1633.
[59] J.Y. Huang, M.H. Chen, W.T. Kuo, Y.J. Sun, F.H. Lin, The characterization and evaluation of cisplatin-loaded magnetite-hydroxyapatite nanop articles (mHAp/CDDP) as dual treatment of hyperthermia and chemotherapy for lung cancer therapy, Ceram Int 41(2) (2015) 2399-2410.
[60] C.H. Lin, P.H. Lin, Induction of ROS formation, poly(ADP-ribose) polymerase-1 activation, and cell death by PCB126 and PCB153 in human T47D and MDA-MB-231 breast cancer cells, Chem Biol Interact 162(2) (2006) 181-94.
[61] O. Kutuk, N. Aytan, B. Karakas, A.G. Kurt, U. Acikbas, S.G. Temel, H. Basaga, Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells, PLoS One 12(8) (2017) e0182809.
[62] M. Cuadrado, B. Martinez-Pastor, M. Murga, L.I. Toledo, P. Gutierrez-Martinez, E. Lopez, O. Fernandez-Capetillo, ATM regulates ATR chromatin loading in response to DNA double-strand breaks, J Exp Med 203(2) (2006) 297-303.
[63] J.L. Andersen, E.S. Zimmerman, J.L. DeHart, S. Murala, O. Ardon, J. Blackett, J. Chen, V. Planelles, ATR and GADD45alpha mediate HIV-1 Vpr-induced apoptosis, Cell Death Differ 12(4) (2005) 326-34.
[64] L.I. Toledo, M. Murga, O. Fernandez-Capetillo, Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs, Mol Oncol 5(4) (2011) 368-73.
[65] D.A. Liebermann, J.S. Tront, X. Sha, K. Mukherjee, A. Mohamed-Hadley, B. Hoffman, Gadd45 stress sensors in malignancy and leukemia, Crit Rev Oncog 16(1-2) (2011) 129-40.
[66] A.J. Waskiewicz, J.A. Cooper, Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast, Curr Opin Cell Biol 7(6) (1995) 798-805.
[67] G. Mordret, MAP kinase kinase: a node connecting multiple pathways, Biol Cell 79(3) (1993) 193-207.
[68] A. Plotnikov, E. Zehorai, S. Procaccia, R. Seger, The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation, Biochim Biophys Acta 1813(9) (2011) 1619-33.
[69] J.J. Gills, S.S. Castillo, C. Zhang, P.A. Petukhov, R.M. Memmott, M. Hollingshead, N. Warfel, J. Han, A.P. Kozikowski, P.A. Dennis, Phosphatidylinositol ether lipid analogues that inhibit AKT also independently activate the stress kinase, p38alpha, through MKK3/6-independent and -dependent mechanisms, J Biol Chem 282(37) (2007) 27020-9.
[70] J. Gupta, A.R. Nebreda, Roles of p38alpha mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer, FEBS J 282(10) (2015) 1841-57.
[71] A.J. Browne, A. Gobel, S. Thiele, L.C. Hofbauer, M. Rauner, T.D. Rachner, p38 MAPK regulates the Wnt inhibitor Dickkopf-1 in osteotropic prostate cancer cells, Cell Death Dis 7 (2016) e2119.
[72] C.H. Hou, S.M. Hou, Y.S. Hsueh, J. Lin, H.C. Wu, F.H. Lin, The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials 30(23-24) (2009) 3956-3960.
[73] F. Braet, E. Wisse, P. Bomans, P. Frederik, W. Geerts, A. Koster, L. Soon, S. Ringer, Contribution of high‐resolution correlative imaging techniques in the study of the liver sieve in three‐dimensions, Microscopy research and technique 70(3) (2007) 230-242.
[74] L.-T. Chen, L. Weiss, The role of the sinus wall in the passage of erythrocytes through the spleen, Blood 41(4) (1973) 529-537.
[75] F. Gentile, C. Chiappini, D. Fine, R. Bhavane, M. Peluccio, M.M.-C. Cheng, X. Liu, M. Ferrari, P. Decuzzi, The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows, Journal of biomechanics 41(10) (2008) 2312-2318.
[76] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery, Nature nanotechnology 2(4) (2007) 249.
[77] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles, Molecular pharmaceutics 5(4) (2008) 505-515.
[78] Y. Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, K. Kataoka, Long-circulating poly (ethylene glycol)–poly (d, l-lactide) block copolymer micelles with modulated surface charge, J Control Release 77(1-2) (2001) 27-38.
[79] H. Ittrich, K. Peldschus, N. Raabe, M. Kaul, G. Adam, Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy, RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, © Georg Thieme Verlag KG, 2013, pp. 1149-1166.
[80] C. Sun, R. Sze, M. Zhang, Folic acid‐PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 78(3) (2006) 550-557.
[81] S. Boutry, S. Laurent, L.V. Elst, R.N. Muller, Specific E‐selectin targeting with a superparamagnetic MRI contrast agent, Contrast media & molecular imaging 1(1) (2006) 15-22.
[82] Z. Medarova, W. Pham, C. Farrar, V. Petkova, A. Moore, In vivo imaging of siRNA delivery and silencing in tumors, Nature medicine 13(3) (2007) 372.
[83] A. Toma, Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging for detecting local recurrence of rectal carcinoma, Kyoto-Furitsu Ika Daigaku Zasshi 113(1) (2004) 33-39.
[84] M.A. Funovics, B. Kapeller, C. Hoeller, H.S. Su, R. Kunstfeld, S. Puig, K. Macfelda, MR imaging of the her2/neu and 9.2. 27 tumor antigens using immunospecific contrast agents, Magnetic resonance imaging 22(6) (2004) 843-850.
[85] Y. Luo, H. Zhou, J. Krueger, C. Kaplan, S.-H. Lee, C. Dolman, D. Markowitz, W. Wu, C. Liu, R.A. Reisfeld, Targeting tumor-associated macrophages as a novel strategy against breast cancer, The Journal of clinical investigation 116(8) (2006) 2132-2141.
[86] M. Yatvin, W. Kreutz, B. Horwitz, M. Shinitzky, pH-sensitive liposomes: possible clinical implications, Science 210(4475) (1980) 1253-1255.
[87] T.M. Allen, Ligand-targeted therapeutics in anticancer therapy, Nature Reviews Cancer 2(10) (2002) 750.
[88] E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat Biotechnol 33(9) (2015) 941-51.
[89] F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, S. Boland, Nanoparticles: molecular targets and cell signalling, Arch Toxicol 85(7) (2011) 733-41.
[90] A. Elsaesser, C.V. Howard, Toxicology of nanoparticles, Adv Drug Deliv Rev 64(2) (2012) 129-37.
[91] Q. Zhao, L. Wang, R. Cheng, L. Mao, R.D. Arnold, E.W. Howerth, Z.G. Chen, S. Platt, Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models, Theranostics 2 (2012) 113-21.
[92] A. Jordan, R. Scholz, K. Maier-Hauff, F.K.H. van Landeghem, N. Waldoefner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen, A. von Deimling, R. Felix, The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, J Neuro-Oncol 78(1) (2006) 7-14.
[93] A.J. Giustini, I. Perreard, A.M. Rauwerdink, P.J. Hoopes, J.B. Weaver, Noninvasive assessment of magnetic nanoparticle-cancer cell interactions, Integr Biol-Uk 4(10) (2012) 1283-1288.
[94] B. Sanz, M.P. Calatayud, T.E. Torres, M.L. Fanarraga, M.R. Ibarra, G.F. Goya, Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating, Biomaterials 114 (2017) 62-70.
[95] C. Wilhelm, J.P. Fortin, F. Gazeau, Tumour cell toxicity of intracellular hyperthermia mediated by magnetic nanoparticles, J Nanosci Nanotechno 7(8) (2007) 2933-2937.
[96] F. Soetaert, S.K. Kandala, A. Bakuzis, R. Ivkov, Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles, Sci Rep 7(1) (2017) 6661.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71553-
dc.description.abstract近年來磁性奈米顆粒在生醫工程上研究展甚受重視。其應用範圍廣泛,磁性奈米粒子在癌症治療上亦有卓越的貢獻,例如局部注射磁性奈米顆粒至腫瘤區,並外加高週波磁場(AMF)可提高局部腫瘤溫度,利用產生高溫有效控制腫瘤體積,達到癌症的熱治療效果。
本論文的第一部分係探討以磁性奈米顆粒熱治療殺死腫瘤細胞之機制。以共沉澱法合成磁性氫氧基磷灰石奈米顆粒(magnetic hydroxyapatite nanoparticles,mHAPs)做為熱種子,HepG2人類肝癌細胞作為體外試驗對象。磁性氫氧基磷灰石奈米顆粒經X 光與電子束繞射分析為氫氧基磷灰石及四氧化三鐵,SQUID 測得此磁性粒子具有超順磁性。1 mg磁性氫氧基磷灰石奈米顆粒,在高週波磁場條件為 f = 750 KHz, H = 10 Oe 於 1ml 純水中,SLP 值為 181.8 W/g。依據謝勒公式計算XRD數據,氫氧基磷灰石奈米顆粒及四氧化三鐵晶粒大小分別為39.1 nm and 19.5 nm。將HepG2與此磁性粒子共同培養並提供外加磁場,癌症細胞暴露在熱治療溫度(43oC±0.5°C) 30分鐘。WST-1試驗顯示於磁性奈米顆粒熱治療組細胞活性被抑制50%以上,LDH試驗中發現,細胞經過磁性奈米顆粒熱治療處理之後,與控制組差異在三倍以上。在live/dead 染色則呈現與以上試驗相同的結果。HepG2經過磁性奈米顆粒熱治療處理之後,測量到大量的活性氧類 (ROS) 產生。在細胞死亡機制探討的部分,利用Ingenuity pathway analysis (IPA)雲端平台分析cDNA微陣列數據,發現HepG2細胞暴露在此磁性粒子下,DNA損傷相關基因(ATM與GADD45-aplha)被抑制,在訊息傳遞路徑中,p38絲裂原活化蛋白激酶(p38 MAPK)及其上下游 (MKK3/MKK6 及ATF-2)均呈現下調控。這些結果建議,共同以磁性氫氧機磷灰石奈米顆粒與高週波磁場所產生的磁性奈米顆粒熱治療,其產生大量的ROS使HepG2人類肝癌細胞DNA損傷,及熱刺激相關的生物效應導致癌症細胞死亡。

本文第二部分將評估以全身遞送磁性奈米顆粒後磁性熱治療的潛在毒性試驗。以健康之免疫不全裸鼠 (BALB/c Nude mice) 作為試驗對象,將不同濃度的磁性奈米顆粒 (BNF)及磁性奈米顆粒標誌免疫球蛋白G (BNF-IgG) (奈米顆粒濃度分別為1, 3, 5 mg)以尾靜脈注射方式打入小鼠體內,之後將小鼠暴露在不同強度的外加磁場 (400, 600, 800 Oe)。於是奈米顆粒熱處理試驗之後,發現暴露在高劑量的小鼠在胸口上有灼傷的痕跡,小鼠胸口溫度高達51度。進一步確認肝臟外觀也獲得相同的結果。取得肝臟進行蘇木素-伊紅染色,發現暴露在高劑量的小鼠群,肝臟部分區域明顯的壞死,甚至造成死亡。另外肝臟組織以普魯士藍染色也發現,奈米顆粒濃度與肝臟壞死區域有正相關。以血液生化檢查確認肝臟受損情形,發現小鼠暴露在高劑量下,肝臟損傷指標中ALP、AST、LDH及ALT指數均偏高。脾臟則無損傷情形。之後以電感耦合等離子質譜儀法檢測血液、肝臟及脾臟中含鐵濃度。發現沉積在肝臟的鐵濃度,最高達到5000ug 鐵/mg 組織,其數值遠高於脾臟及血液樣品。之後依據組織含鐵濃度計算能量累積,在小鼠暴露於高劑量奈米顆粒熱處理其約1012焦耳。這些結果建議以全身遞送磁性奈米顆粒標誌免疫球蛋白G(BNF-IgG)其所提供奈米熱治療的潛在毒性低於磁性奈米顆粒(BNF)。
zh_TW
dc.description.abstractMagnetic nanoparticle hyperthermia therapy treatment for cancer has gained more favor in the research community in recent years. However, there are no definitive reports were available on how magnetic nanoparticle hyperthermia induces cancer cell death. In the first part, HepG2 cell death with magnetic nanoparticle hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe2+. The grain size of HAPs and iron oxide magnetic were 39.1 nm and 19.5 nm were calculated by the Scherrer formula. HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5°C. After heating, cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured ROS in cells exposed to MHT was two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of reactive oxygen species (ROS) to cause DNA damage, which leads to cell death that complemented heat-stress related biological effects.
In the second part, the potential toxicity of magnetic nanoparticle hyperthermia following systemic delivery of magnetic iron oxide nanoparticles (MIONs) was assessed in in vivo study. In this study, 8-week old healthy female nude mice were injected with starch-coated magnetic iron oxide nanoparticles (BNF) or their counterparts labeled with a polyclonal human antibody (BNF-IgG) at 1mg, 3mg or 5mg concentration on day 1. On day 3, animals were exposed to an alternating magnetic field (AMF) having one of three different amplitudes (400, 600 and 800 Oe) for a duration of 20 minutes. 24 hours after AMF treatment, blood, liver and spleen were harvested from each mouse and analyzed with histopathology for tissue damage and with inductively-coupled plasma mass spectrometry (ICPMS) for iron content. Additional endpoints included tissue damage to skin, temperature measurements, and liver function enzyme analysis in serum. Animals treated with different concentrations of BNF/BNF-IgG nanoparticles under different field strength exhibited varying degrees of toxicity. Visible burn lesions were identified on chest region and liver damage after treatment with BNF/BNF-IgG at higher concentration and field strength. Analysis of histopathology revealed wide spread tissue damage when animals were treated with high concentrations of nanoparticles under higher field strength. Following systemic delivery, BNF and BNF-IgG nanoparticles can accumulate in the liver and spleen, making these the sites of potential toxicity. Our findings suggest BNF nanoparticles may be more toxic than BNF-IgG under same alternating magnetic fields.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:03:07Z (GMT). No. of bitstreams: 1
ntu-107-D00548023-1.pdf: 6721105 bytes, checksum: 65ab4c09524cf3becaebf6e39aabbda8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
論文口委審定書----------------------------------------------------------------------------------------i
致謝------------------------------------------------------------------------------------------------------ii
中文摘要------------------------------------------------------------------------------------------------iii
Abstract--------------------------------------------------------------------------------------------------v
Abbreviation list---------------------------------------------------------------------------------------vii
List of figures-----------------------------------------------------------------------------------------xiii
List of tables-------------------------------------------------------------------------------------------xvi
Chapter 1. Introduction
1.1 Cancer and cancer therapies-------------------------------------------------------------------1
1.2 Hyperthermia -------------------------------------------------------------------------------------2
1.3 Mechanism of hyperthermia--------------------------------------------------------------------6
1.4 Magnetic nanoparticle hyperthermia---------------------------------------------------------8
1.5 Magnetic nanoparticles in biomedicine------------------------------------------------------9
1.6 The heating mechanisms of the magnetic nanoparticles--------------------------------11
Chapter 2. Materials and Equipment
2.1 Experiment equipment and reagents--------------------------------------------------------15
2.2 Experimental flow chart-----------------------------------------------------------------------17

Chapter 3. ROS-induced HepG2 Cell Death from hyperthermia using
Magnetic Hydroxyapatite Nanoparticles
3.1 Introduction--------------------------------------------------------------------------------------19
3.1.1 Liver cancer-----------------------------------------------------------------------------------19
3.1.2 HAP (hydroxyapatite)----------------------------------------------------------------------- 20
3.1.3 MAPK (mitogen activated protein kinases) --------------------------------------------- 21
3.1.4 ATM (ataxia telangiectasia, mutated) ---------------------------------------------------- 22
3.1.5 GADD45 (Growth Arrest and DNA Damage-inducible 45) --------------------------24
3.2 Purpose of this study-------------------------------------------------------------------------- 27
3.3 Characterization of synthesized nanoparticles for in vitro study---------------------28
3.3.1 Preparation of magnetic Hydroxyapatite nanoparticles (mHAPs) ------------------- 28
3.3.2 Transmission Electron Microscope (TEM) --------------------------------------------- 28
3.3.3 X-Ray Diffractometry (XRD) ------------------------------------------------------------- 29
3.3.4 Scanning Electron Microscope/Energy-Dispersive X-ray System (STEM-EDX)- 29
3.3.5 Zeta-potential analysis-----------------------------------------------------------------------30
3.3.6 Heat generation-------------------------------------------------------------------------------30
3.3.7 Evaluation of magnetic property---------------------------------------------------------- 30
3.4 The materials and methods of in vitro study---------------------------------------------- 31
3.4.1 MHT of mHAPs to HepG2 cells in vitro--------------------------------------------------31
3.4.2 Evaluation of cell viability (WST-1 assay) and cytotoxicity (LDH assay) ----------31
3.4.3 Live/Dead cells staining and quantification ----------------------------------------------32
3.4.4 Annexin V/ PI staining ---------------------------------------------------------------------33
3.4.5 Reactive Oxygen Species (ROS) assay --------------------------------------------------33
3.4.6 cDNA microarray analysis and signal pathway analysis-------------------------------33
3.4.7 Quantitative real time PCR (qPCR) -------------------------------------------------------34
3.4.8 Analysis of Western Blot to detect apoptosis-related proteins----------------------- 34
3.4.9 Statistical method ---------------------------------------------------------------------------35
3.5 The in vitro study results-------------------------------------------------------------------- 35
3.5.1 Material characterization for in vitro study--------------------------------------------- 35
3.5.2 The in vitro study of magnetic nanoparticle hyperthermia----------------------------40
3.5.3 Annexin V/ PI staining and reactive oxygen species (ROS) generation------------ 42
3.5.4 Identification of gene expression and related pathway------------------------------- 43
3.5.5 p38 kinase response to HepG2 cells treated with MHT------------------------------ 46
3.6 Discussion--------------------------------------------------------------------------------------48
3.7 Conclusion-------------------------------------------------------------------------------------51
Chapter 4. Systemically delivered antibody-labelled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields
4.1 Introduction -------------------------------------------------------------------------------------52
4.1.1 Tissue distribution of nanoparticles after intravenous administration----------------52
4.1.2 Magnetic nanoparticles targeting strategies----------------------------------------------54
4.2 Motivation ----------------------------------------------------------------------------------------56
4.3 Purpose of this study----------------------------------------------------------------------------57
4.4 Characterization of nanoparticles for in vivo study------------------------------------ 58
4.4.1 Magnetic iron oxide nanoparticles-------------------------------------------------------- 58
4.4.2 Alternating Magnetic Field (AMF) System-----------------------------------------------59
4.4.3 Particle SLP measurements---------------------------------------------------------------- 59
4.5 The materials and methods of in vivo study---------------------------------------------- 60
4.5.1 Mice------------------------------------------------------------------------------------------- 60
4.5.2 Experimental design of in vivo study----------------------------------------------------- 60
4.5.3 Magnetic nanoparticle hyperthermia of toxicity study--------------------------------- 63
4.5.4 Euthanasia and tissue harvest-------------------------------------------------------------- 63
4.5.5 Histopathology and quantification-------------------------------------------------------- 64
4.5.6 Iron concentration measurement by ICP-MS-------------------------------------------- 64
4.5.7 Serum enzyme detection-------------------------------------------------------------------- 65
4.5.8 Acute toxicity introduction----------------------------------------------------------------- 65
4.5.9 Statistical Analysis-------------------------------------------------------------------------- 66
4.6 The in vivo study results-----------------------------------------------------------------------67
4.6.1 The BNF & BNF-IgG characteristics and SLP measurement for in vivo study------ 67
4.6.2 Survival outcomes of animals treated with BNF and BNF-IgG particles after MHT ---------------------------------------------------------------------------------------------------68
4.6.3 Visible burn lesions were identified on chest region and liver damage after treatment with BNF Plain and BNF-IgG nanoparticles at higher concentration and field strength -----------------------------------------------------------------------------------------------------------70
4.6.4 Heating profile of measured chest temperature shows dose dependent increase of
temperature in animals treated with nanoparticles under magnetic field------------72
4.6.5 Histology shows wide spread tissue damage when animals were treated with high concentration of nanoparticles under higher field strength-----------------------------76
4.6.6 Quantitative data of iron content in blood, spleen and liver for each treatment of group by ICPMS--------------------------------------------------------------------------------------------- 80
4.6.7 Calculation of energy which produced by MHT---------------------------------------- 84
4.6.8 Quantification of Prussian blue positive area for undamaged and necrotic tissue of liver tissue ----------------------------------------------------------------------------------- 87
4.6.9 Liver function analysis shows upregulation of key enzymes in animals treated with nanoparticles under higher field strength------------------------------------------------- 91
4.7 Discussion---------------------------------------------------------------------------------------- 94
4.7.1 The toxicity study of BNF and BNF-IgG nanoparticles --------------------------------94
4.7.2 The toxicity study of magnetic nanoparticle hyperthermia ----------------------------------95
4.8 Conclusion----------------------------------------------------------------------------------------97
Reference
dc.language.isoen
dc.subject奈米顆粒熱治療zh_TW
dc.subject磁性氫氧基磷灰石zh_TW
dc.subject交變磁場zh_TW
dc.subject磁性氧化鐵奈米粒子zh_TW
dc.subjectcDNA微陣列zh_TW
dc.subject全身遞送zh_TW
dc.subject單克隆抗體zh_TW
dc.subjectmonoclonal antibodyen
dc.subjectmagnetic nanoparticle hyperthermiaen
dc.subjectmagnetic hydroxyapatite nanoparticlesen
dc.subjectalternating magnetic fielden
dc.subjectcDNA microarrayen
dc.subjectmagnetic iron oxide nanoparticles (MIONs)en
dc.subjectsystemic deliveryen
dc.title奈米顆粒熱治療-體外HepG2試驗細胞死亡機制探討及體內試驗小鼠毒性研究zh_TW
dc.titleThe Cytotoxic Effects and Biotoxic Effects of Magnetic Nanoparticle Hyperthermiaen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.coadvisor羅伯特伊維科夫(Robert Ivkov)
dc.contributor.oralexamcommittee劉華昌(Hwa-Chang Liu),林俊彬(Chun-Pin Lin),丁詩同(Shih-Torng Ding),張至宏(Chih-Hung Chang),郭士民(Shyh-Ming Kuo)
dc.subject.keyword奈米顆粒熱治療,磁性氫氧基磷灰石,交變磁場,磁性氧化鐵奈米粒子,cDNA微陣列,全身遞送,單克隆抗體,zh_TW
dc.subject.keywordmagnetic nanoparticle hyperthermia,magnetic hydroxyapatite nanoparticles,alternating magnetic field,cDNA microarray,magnetic iron oxide nanoparticles (MIONs),systemic delivery,monoclonal antibody,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201900240
dc.rights.note有償授權
dc.date.accepted2019-01-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved