請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7151完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晃巖 | zh_TW |
| dc.contributor.advisor | Hoang-Yan Lin | en |
| dc.contributor.author | 陳冠妤 | zh_TW |
| dc.contributor.author | Guan-Yu Chen | en |
| dc.date.accessioned | 2021-05-19T17:39:51Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Geng, Jason. "Three-dimensional display technologies." Advances in optics and photonics 5.4 (2013): 456-535.
[2] Hong, Jisoo, et al. "Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]." Appl. Opt 50.34 (2011): H87-H115. [3] 許精益、黃乙白,「3D 立體顯示技術之發展與研究」,《光學工程》,第九十八期,53~60 頁,2007 年。 [4] 黃乙白、周秉彥,「3D 漂浮顯示與凌空觸控技術」,《科學發展》,503 期,14~20 頁,2014 年。 [5] 林晃巖,「試看紅塵的深度:漫談 3D 立體顯示器的發展」,2015國際光之年(下)-科技發展篇,10~19 頁,2015 年。 [6] Izmantoko, Y. S., Andriyan Bayu Suksmono, and T. L. Mengko. "Implementation of anaglyph method for stereo microscope image display." Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. IEEE, 2011. [7] 呂怡貞,「戴上眼鏡 看進立體世界」,《科學人雜誌》,科學Easy Learn網路板,資訊科技,2012 年 from : http://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=1915 [8] SONY, from : http://store.sony.com.tw/product/KDL-46NX710 [9] VIVE 頭戴式顯示器, from : https://www.vive.com/tw/product/ [10] 程治, 工程系, and 大綱. "3D 立體顯示應用產品的現況與未來發展." 摘自:(http://www. digitimes. com. tw/tw/B2B/Seminar/Service/dow nload/0539804240/980424tvci_2. p df). 2009.。 [11] Fattal, David, et al. "A multi-directional backlight for a wide-angle, glasses-free three-dimensional display." Nature 495.7441 (2013): 348. [12] HP Labs develops new Glasses-Free, Wide Angle 3D Screen Technology, from :http://lightfield-forum.com/2013/04/hp-labs-develops-new-glasses-free-wide-angle-3d-screen-technology/ [13] Kollin, Joel S., Stephen A. Benton, and Mary Lou Jepsen. "Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator." Holographic Optics II: Principles and Applications. Vol. 1136. International Society for Optics and Photonics, 1989. [14] Soltan, Parviz, et al. "Laser based 3D volumetric display system." U.S. Patent No. 5,854,613. 29 Dec. 1998. [15] 呂怡貞,「丟掉眼鏡 當機不立斷」,《科學人雜誌》,科學Easy Learn網路板,資訊科技,2012 年。 from : http://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=1916 [16] Sullivan, Alan. "58.3: A Solid‐state Multi‐planar Volumetric Display." SID symposium digest of technical papers. Vol. 34. No. 1. Oxford, UK: Blackwell Publishing Ltd, 2003. [17] Zhao, Zeyu, et al. "The generalized laws of refraction and reflection." Opto-Electronic Engineering 44.02 (2017): 129-139. [18] Yee, Kane. "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 (1966): 302-307. [19] Yu, Nanfang, et al. "Light propagation with phase discontinuities: generalized laws of reflection and refraction." science 334.6054 (2011): 333-337. [20] 楊光宇, "介面梯度超穎材料之電磁波調控研究," 碩士論文, 國立臺灣大學, 臺灣, 2012. [21] Sun, Yan-Yan, et al. "General laws of reflection and refraction for metasurface with phase discontinuity." (2013): 104201-104201. [22] Deng, Zi-Lan, et al. "Facile metagrating holograms with broadband and extreme angle tolerance." Light: Science & Applications 7.1 (2018): 78. [23] Khorasaninejad, Mohammadreza, et al. "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging." Science 352.6290 (2016): 1190-1194. [24] Chen, Bo Han, et al. "GaN metalens for pixel-level full-color routing at visible light." Nano letters 17.10 (2017): 6345-6352. [25] Sun, Shulin, et al. "High-efficiency broadband anomalous reflection by gradient meta-surfaces." Nano letters 12.12 (2012): 6223-6229. [26] Te-Chuan Chen, “Enhancing the color gamut of organic light-emitting devices by employing microcavity structures and color filters,” 碩士論文, 國立交通大學, 臺灣, 2012. [27] Chen, Chieh-Wei, et al. "Top-emitting organic light-emitting devices using surface-modified Ag anode." Applied physics letters 83.25 (2003): 5127-5129. [28] 溫健揚, “Numerical Studies on Structural and Optoelectronic Properties of White Organic Light-Emitting Diodes,” 碩士論文, 國立彰化師範大學, 2008. [29] SONY, Super top emission technology. from : https://pro.sony/en_HR/technology/oled [30] Woods, Andrew J. "Crosstalk in stereoscopic displays: a review." Journal of Electronic Imaging 21.4 (2012): 040902. [31] Huang, KuoChung, et al. "Measurement of contrast ratios for 3D display." Input/Output and Imaging Technolgies II. Vol. 4080. International Society for Optics and Photonics, 2000. [32] Järvenpää, Toni, and Marja Salmimaa. "Optical characterization of autostereoscopic 3‐D displays." Journal of the Society for Information Display 16.8 (2008): 825-833. [33] Wu, Chung-Chih, et al. "Advanced organic light-emitting devices for enhancing display performances." Journal of Display Technology 1.2 (2005): 248-266. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7151 | - |
| dc.description.abstract | 隨著科技的進步與顯示器性能的提升,立體顯示越來越普及化,追求與現實更相近與還原度更高的影像,以達到滿足人類的視覺需求。在2013年David Fattal等人提出以多指向性背光源來實現廣角裸眼顯示技術,LED透過波導技術與液晶搭配,將圖像顯示在正確方向上。
而本篇論文中,以提出了metasurface結合OLED的模型,空間多工式將同多個影像經由反射產生指向性,分成不同視角區域,以FDTD模擬電磁波的傳播過程,使用光學模擬軟體來調變不同參數,模擬分析OLED與高指向性OLED在不同週期的metasurface結構之遠場角度分佈、出光效率及發光頻譜。 本研究所要解決裸眼顯示技術中不同視角區域的光源指向性不足的問題,所以透過DBR共振元件結構的高指向性OLED,使用陣列的點光源來模擬發光區,使下發光的部分透過底部有週期性的metasurface能有聚焦的效果,在此聚焦是指發散角大角度的部分強度下降。 在未來的研究中,不只可以改變OLED的膜層結構設計來增加出光指向性,也可以透過出元件後再經過光柵或是穿透式metasurface的結構,達到角度偏折的部分外,還能使光的指向性更進一步的提升,crosstalk得以改善,來達到裸眼立體顯示中更好的影像品質。 | zh_TW |
| dc.description.abstract | With the advancement of technology and the improvement of display performance, stereoscopic display has become more and more popular, and pursuit of more realistic images with higher image quality to meet the visual needs of human beings.
In 2013, David Fattal proposed a multi-directional backlight for a wide-angle, glasses-free three-dimensional display, LED through waveguide technology with the liquid crystal, the image is displayed in the correct direction. In this paper, the model of metasurface combined with OLED is proposed. The spatial multiplexing method will generate directionality with multiple images via reflection, and divide into different viewing regions to simulate the propagation process of electromagnetic waves by FDTD, and use optical simulation software to modulate different parameters are used to simulate the far-field intensity distribution, light-emitting efficiency and luminescence spectrum, of OLED and high-directional OLED, in different periods of metasurface structure. In this research, the problem of the lack of directionality of the light source in different viewing angle areas in the naked eye display technology is solved. Therefore, the high-directionality OLED through the DBR resonant structure is used to simulate the light-emitting area by using the point light source array, so that the lower light-emitting portion has periodicity through the bottom the metasurface can have a focusing effect, where focusing refers to a partial intensity drop at a large angle of divergence. In future research, not only can the OLED film structure design be changed to increase the light directivity, but also through the structure of the grating or the transmissive metasurface to achieve the angle deflection, the directionality of light is further improved, and crosstalk can be improved to achieve better image quality in naked-eye stereoscopic display. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:51Z (GMT). No. of bitstreams: 1 ntu-108-R06941010-1.pdf: 4351953 bytes, checksum: c2770076bff191f6881326789702fba1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 目 錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 立體視覺成像原理 2 1.2.1 心理深度因子 2 1.2.2 生理視深因子 3 1.3 顯示器的分類與發展 5 1.3.1 穿戴式立體顯示器 6 1.3.2 裸眼式立體顯示器 8 1.4 研究動機與目的 13 1.5 本文架構 15 第二章 設計原理與模擬架構 16 2.1 有機發光二極體之簡介 16 2.2 超穎介面介紹 18 2.2.1 廣義的司乃爾定律 18 2.2.2 超穎介面之相位變化 19 2.2.3 週期性超穎介面之介紹 21 2.3 模擬軟體 24 2.3.1 RSOFT™ 模擬設定 24 2.3.2 時域有限差分法 24 2.3.3 空間格點參數 25 2.3.4 入射場設定 27 2.4 結構設計與分析 28 2.4.1 OLED結構 28 2.4.2 超穎介面結構 29 2.5 驗證模擬方法 31 2.5.1 OLED場型驗證 31 2.5.2 超穎介面在單一光源在中心位置驗證模擬 32 第三章 研究結果與討論 34 3.1 模擬OLED實驗結果與分析 34 3.1.1 OLED模擬結果分析 34 3.1.2 高指向性OLED實驗結果分析 37 3.2 不同週期超穎介面之結果與分析 40 3.2.1 超穎介面週期結構T = 1.5 µm之遠場角度分佈 40 3.2.2 超穎介面週期結構T = 0.9 µm之遠場角度分佈 44 3.3 不同週期的超穎介面結構對出光效率之影響 48 3.3.1 超穎介面結構之出光效率 48 3.3.2 超穎介面週期結構T = 1.5 µm之出光效率 49 3.3.3 超穎介面週期結構T = 0.9 µm之出光效率 50 3.4 不同週期的超穎介面結構對發光頻譜之影響 51 3.4.1 超穎介面結構之發光頻譜 51 3.4.2 超穎介面週期結構T = 1.5 µm之頻譜 53 3.4.3 超穎介面週期結構T = 0.9 µm之頻譜 57 第四章 結論與未來展望 60 4.1 結論 60 4.2 未來展望 61 附錄 62 文獻參考 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 裸眼顯示技術 | zh_TW |
| dc.subject | 高指向性有機發光二極體 | zh_TW |
| dc.subject | Autostereoscopic | en |
| dc.subject | Metasurface | en |
| dc.subject | High-directional OLED | en |
| dc.title | 利用超穎介面及有機發光二極體達成裸眼式立體顯示器之研究 | zh_TW |
| dc.title | An Autostereoscopic Display Based on Metasurface and Organic Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳忠幟;蘇國棟 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Chih Wu;Guo-Dung Su | en |
| dc.subject.keyword | 裸眼顯示技術,超穎介面,高指向性有機發光二極體, | zh_TW |
| dc.subject.keyword | Autostereoscopic,Metasurface,High-directional OLED, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU201902534 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
