請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁(Hsien-Yeh Chen) | |
| dc.contributor.author | Zhen-Yu Guan | en |
| dc.contributor.author | 官振禹 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:02:13Z | - |
| dc.date.available | 2022-02-12 | |
| dc.date.copyright | 2019-02-12 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-30 | |
| dc.identifier.citation | 1. Castner, D. G., Surface science: View from the edge. Nature 2003, 422, 129-130.
2. Roach, P.; Eglin, D.; Rohde, K.; Perry, C. C., Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine 2007, 18, 1263-1277. 3. Zheng, Y. F.; Gu, X. N.; Witte, F., Biodegradable metals. Materials Science and Engineering: R: Reports 2014, 77, 1-34. 4. Ifkovits, J. L.; Burdick, J. A., Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tissue Engineering 2007, 13, 2369-2385. 5. Kundu, B.; Rajkhowa, R.; Kundu, S. C.; Wang, X., Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews 2013, 65, 457-470. 6. Sun, T.; Qing, G.; Su, B.; Jiang, L., Functional biointerface materials inspired from nature. Chemical Society Reviews 2011, 40, 2909-2921. 7. Hoffman, A. S., SURFACE MODIFICATION OF POLYMERS: Physical, Chemical, Mechanical and Biological Methods. Macromolecular Symposia 1996, 101, 443-454. 8. Cato, T. L.; Tao, J.; Sangamesh, G. K.; Lakshmi, S. N., Biologically Active Chitosan Systems for Tissue Engineering and Regenerative Medicine. Current Topics in Medicinal Chemistry 2008, 8, 354-364. 9. Wong, L. S.; Khan, F.; Micklefield, J., Selective covalent protein immobilization: strategies and applications. Chemical reviews 2009, 109, 4025-53. 10. Morra, M.; Cassineli, C., Non-fouling properties of polysaccharide-coated surfaces. Journal of Biomaterials Science, Polymer Edition 1999, 10, 1107-1124. 11. Alibeik, S.; Zhu, S.; Brash, J. L., Surface modification with PEG and hirudin for protein resistance and thrombin neutralization in blood contact. Colloids and Surfaces B: Biointerfaces 2010, 81, 389-396. 12. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D. E., Soft Lithography in Biology and Biochemistry. Annual Review of Biomedical Engineering 2001, 3, 335-373. 13. Falconnet, D.; Csucs, G.; Michelle Grandin, H.; Textor, M., Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044-3063. 14. Zhu, Y.; Mao, Z.; Gao, C., Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient. Biomacromolecules 2013, 14, 342-9. 15. Min, H. K.; Oh, S. H.; Lee, J. M.; Im, G. I.; Lee, J. H., Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation. Acta biomaterialia 2014, 10, 1272-9. 16. Sun, A.; Lahann, J., Dynamically switchable biointerfaces. Soft Matter 2009, 5, 1555-1561. 17. Liu, Y.; Mu, L.; Liu, B.; Kong, J., Controlled switchable surface. Chemistry 2005, 11, 2622-31. 18. Gorham, W. F., A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4, 3027-3039. 19. Chen, C.; Selvarasah, S.; Chao, S.; Khanicheh, A.; Mavroidis, C.; Dokmeci, M. R. In An Electrohydrodynamic Micropump for On-Chip Fluid Pumping on a Flexible Parylene Substrate, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 16-19 Jan. 2007; 2007; pp 826-829. 20. Hassler, C.; von Metzen, R. P.; Ruther, P.; Stieglitz, T., Characterization of parylene C as an encapsulation material for implanted neural prostheses. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010, 93B, 266-274. 21. Demirel, M. C.; So, E.; Ritty, T. M.; Naidu, S. H.; Lakhtakia, A., Fibroblast cell attachment and growth on nanoengineered sculptured thin films. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2006, 81B, 219-223. 22. Lahann, J., Vapor-based polymer coatings for potential biomedical applications. Polymer International 2006, 55, 1361-1370. 23. Lahann, J.; Langer, R., Novel Poly(p-xylylenes): Thin Films with Tailored Chemical and Optical Properties. Macromolecules 2002, 35, 4380-4386. 24. Lahann, J.; Langer, R., Surface-Initiated Ring-Opening Polymerization of ϵ-Caprolactone from a Patterned Poly(hydroxymethyl- p-xylylene). Macromolecular Rapid Communications 2001, 22, 968-971. 25. Lahann, J.; Höcker, H.; Langer, R., Synthesis of Amino[2.2]paracyclophanes—Beneficial Monomers for Bioactive Coating of Medical Implant Materials. Angewandte Chemie International Edition 2001, 40, 2947-2947. 26. Nandivada, H.; Chen, H.-Y.; Lahann, J., Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular Rapid Communications 2005, 26, 1794-1799. 27. Wu, J.-T.; Huang, C.-H.; Liang, W.-C.; Wu, Y.-L.; Yu, J.; Chen, H.-Y., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromolecular Rapid Communications 2012, 33, 922-927. 28. Nandivada, H.; Chen, H.-Y.; Bondarenko, L.; Lahann, J., Reactive Polymer Coatings that “Click”. Angewandte Chemie International Edition 2006, 45, 3360-3363. 29. Lahann, J.; Balcells, M.; Lu, H.; Rodon, T.; Jensen, K. F.; Langer, R., Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices. Analytical Chemistry 2003, 75, 2117-2122. 30. Chen, Y.-C.; Sun, T.-P.; Su, C.-T.; Wu, J.-T.; Lin, C.-Y.; Yu, J.; Huang, C.-W.; Chen, C.-J.; Chen, H.-Y., Sustained Immobilization of Growth Factor Proteins Based on Functionalized Parylenes. ACS Applied Materials & Interfaces 2014, 6, 21906-21910. 31. Su, C.-T.; Yuan, R.-H.; Chen, Y.-C.; Lin, T.-J.; Chien, H.-W.; Hsieh, C.-C.; Tsai, W.-B.; Chang, C.-H.; Chen, H.-Y., A facile approach toward protein-resistant biointerfaces based on photodefinable poly-p-xylylene coating. Colloids and Surfaces B: Biointerfaces 2014, 116, 727-733. 32. Tsai, M.-Y.; Lin, C.-Y.; Huang, C.-H.; Gu, J.-A.; Huang, S.-T.; Yu, J.; Chen, H.-Y., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012, 48, 10969-10971. 33. Tsai, M.-Y.; Chen, Y.-C.; Lin, T.-J.; Hsu, Y.-C.; Lin, C.-Y.; Yuan, R.-H.; Yu, J.; Teng, M.-S.; Hirtz, M.; Chen, M. H.-C.; Chang, C.-H.; Chen, H.-Y., Vapor-Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifications. Advanced Functional Materials 2014, 24, 2281-2287. 34. Guan, Z.-Y.; Huang, C.-W.; Huang, M.-C.; Wu, C.-Y.; Liu, H.-Y.; Ding, S.-T.; Chen, H.-Y., Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins. Colloids and Surfaces B: Biointerfaces 2017, 149, 130-137. 35. Guan, Z.-Y.; Wu, C.-Y.; Wu, J.-T.; Tai, C.-H.; Yu, J.; Chen, H.-Y., Multifunctional and Continuous Gradients of Biointerfaces Based on Dual Reverse Click Reactions. ACS Applied Materials & Interfaces 2016, 8, 13812-13818. 36. Guan, Z.-Y.; Wu, C.-Y.; Li, Y.-J.; Chen, H.-Y., Switching the Biointerface of Displaceable Poly-p-xylylene Coatings. ACS Applied Materials & Interfaces 2015, 7, 14431-14438. 37. Guan, Z.-Y.; Wu, C.-Y.; Chen, H.-Y., Stepwise and Programmable Cell Differentiation Pathways of Controlled Functional Biointerfaces. ACS Biomaterials Science & Engineering 2017, 3, 1815-1821. 38. Guan, Z.-Y.; Chen, Y.-K.; Wu, C.-Y.; Wu, S.-C.; Yu, J.; Chen, H.-Y., Surface modification: activation and deactivation of osteogenic differentiation based on detachable growth factor protein. Journal of Materials Chemistry B 2018, 6, 236-240. 39. Nakanishi, K.; Sakiyama, T.; Imamura, K., On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Journal of Bioscience and Bioengineering 2001, 91, 233-244. 40. Vogler, E. A., Protein adsorption in three dimensions. Biomaterials 2012, 33, 1201-1237. 41. Gray, J. J., The interaction of proteins with solid surfaces. Current Opinion in Structural Biology 2004, 14, 110-115. 42. Ito, Y.; Tada, S., Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013, 34, 7565-7574. 43. Secundo, F., Conformational changes of enzymes upon immobilisation. Chemical Society Reviews 2013, 42, 6250-6261. 44. G. Castner, D.; Ratner, B., Biomedical surface science: Foundations to frontiers. 2002; Vol. 500, p 28-60. 45. Nath, N.; Hyun, J.; Ma, H.; Chilkoti, A., Surface engineering strategies for control of protein and cell interactions. 2004; Vol. 570, p 98-110. 46. Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D., Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science 2008, 33, 1059-1087. 47. Wu, J.-T.; Sun, T.-P.; Huang, C.-W.; Su, C.-T.; Wu, C.-Y.; Yeh, S.-Y.; Yang, D.-K.; Chen, L.-C.; Ding, S.-T.; Chen, H.-Y., Tunable coverage of immobilized biomolecules for biofunctional interface design. Biomaterials Science 2015, 3, 1266-1269. 48. Barnthip, N.; Parhi, P.; Golas, A.; Vogler, E. A., Volumetric Interpretation of Protein Adsorption: Kinetics of Protein-Adsorption Competition from Binary Solution. Biomaterials 2009, 30, 6495-6513. 49. Lühmann, T.; Jones, G.; Gutmann, M.; Rybak, J.-C.; Nickel, J.; Rubini, M.; Meinel, L., Bio-orthogonal Immobilization of Fibroblast Growth Factor 2 for Spatial Controlled Cell Proliferation. ACS Biomaterials Science & Engineering 2015, 1, 740-746. 50. Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T., Site-Specific Protein Immobilization by Staudinger Ligation. Journal of the American Chemical Society 2003, 125, 11790-11791. 51. Sletten, E. M.; Bertozzi, C. R., Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angewandte Chemie International Edition 2009, 48, 6974-6998. 52. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W., NIH Image to ImageJ: 25 years of Image Analysis. Nature methods 2012, 9, 671-675. 53. Livak, K. J.; Schmittgen, T. D., Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402-408. 54. Song, J. S.; Lee, S.; Jung, S. H.; Cha, G. C.; Mun, M. S., Improved biocompatibility of parylene-C films prepared by chemical vapor deposition and the subsequent plasma treatment. Journal of Applied Polymer Science 2009, 112, 3677-3685. 55. Utesch, T.; Daminelli, G.; Mroginski, M. A., Molecular Dynamics Simulations of the Adsorption of Bone Morphogenetic Protein-2 on Surfaces with Medical Relevance. Langmuir 2011, 27, 13144-13153. 56. Panos, M.; Sen, T. Z.; Ahunbay, M. G., Molecular Simulation of Fibronectin Adsorption onto Polyurethane Surfaces. Langmuir 2012, 28, 12619-12628. 57. Shen, J.-W.; Wu, T.; Wang, Q.; Pan, H.-H., Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials 2008, 29, 513-532. 58. Tilton, R. D.; Robertson, C. R.; Gast, A. P., Manipulation of hydrophobic interactions in protein adsorption. Langmuir 1991, 7, 2710-2718. 59. Zaera, F., Probing Liquid/Solid Interfaces at the Molecular Level. Chemical reviews 2012, 112, 2920-2986. 60. Kurland, N. E.; Drira, Z.; Yadavalli, V. K., Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 2012, 43, 116-128. 61. Kao, P.; Parhi, P.; Krishnan, A.; Noh, H.; Haider, W.; Tadigadapa, S.; Allara, D. L.; Vogler, E. A., Volumetric interpretation of protein adsorption: Interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations. Biomaterials 2011, 32, 969-978. 62. Lu, J. R.; Su, T. J.; Penfold, J., Adsorption of Serum Albumins at the Air/Water Interface. Langmuir 1999, 15, 6975-6983. 63. Hedin, J.; Löfroth, J.-E.; Nydén, M., Adsorption Behavior and Cross-Linking of EHEC and HM-EHEC at Hydrophilic and Hydrophobic Modified Surfaces Monitored by SPR and QCM-D. Langmuir 2007, 23, 6148-6155. 64. Noh, H.; Vogler, E. A., Volumetric interpretation of protein adsorption: Partition coefficients, interphase volumes, and free energies of adsorption to hydrophobic surfaces. Biomaterials 2006, 27, 5780-5793. 65. Vörös, J., The Density and Refractive Index of Adsorbing Protein Layers. Biophysical Journal 2004, 87, 553-561. 66. Liu, Y.; Zhang, W.; Yu, X.; Zhang, H.; Zhao, R.; Shangguan, D.; Li, Y.; Shen, B.; Liu, G., Quartz crystal biosensor for real-time kinetic analysis of interaction between human TNF-α and monoclonal antibodies. Sensors and Actuators B: Chemical 2004, 99, 416-424. 67. Barnthip, N.; Vogler, E. A., Protein adsorption kinetics from single- and binary-solution. Applied Surface Science 2012, 262, 19-23. 68. You, H. X.; Lowe, C. R., AFM Studies of Protein Adsorption: 2. Characterization of Immunoglobulin G Adsorption by Detergent Washing. Journal of Colloid and Interface Science 1996, 182, 586-601. 69. Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Morris, V. J., Orogenic Displacement of Protein from the Air/Water Interface by Competitive Adsorption. Journal of Colloid and Interface Science 1999, 210, 157-166. 70. Cacciafesta, P.; Humphris, A. D. L.; Jandt, K. D.; Miles, M. J., Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir 2000, 16, 8167-8175. 71. Marchin, K. L.; Berrie, C. L., Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir 2003, 19, 9883-9888. 72. McGee-Russell, S. M., HISTOCHEMICAL METHODS FOR CALCIUM. Journal of Histochemistry & Cytochemistry 1958, 6, 22-42. 73. Rodger, D. C.; Fong, A. J.; Li, W.; Ameri, H.; Ahuja, A. K.; Gutierrez, C.; Lavrov, I.; Zhong, H.; Menon, P. R.; Meng, E.; Burdick, J. W.; Roy, R. R.; Edgerton, V. R.; Weiland, J. D.; Humayun, M. S.; Tai, Y.-C., Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors and Actuators B: Chemical 2008, 132, 449-460. 74. Bettinger, C. J.; Langer, R.; Borenstein, J. T., Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function. Angewandte Chemie International Edition 2009, 48, 5406-5415. 75. Wu, J.; Mao, Z.; Tan, H.; Han, L.; Ren, T.; Gao, C., Gradient biomaterials and their influences on cell migration. Interface Focus 2012, 2, 337. 76. Scully, K. M.; Rosenfeld, M. G., Pituitary Development: Regulatory Codes in Mammalian Organogenesis. Science 2002, 295, 2231. 77. Oh, S. H.; Park, I. K.; Kim, J. M.; Lee, J. H., In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007, 28, 1664-1671. 78. Ma, Y.; Zheng, J.; Amond, E. F.; Stafford, C. M.; Becker, M. L., Facile Fabrication of “Dual Click” One- and Two-Dimensional Orthogonal Peptide Concentration Gradients. Biomacromolecules 2013, 14, 665-671. 79. Ross, A. M.; Lahann, J., Surface engineering the cellular microenvironment via patterning and gradients. Journal of Polymer Science Part B: Polymer Physics 2013, 51, 775-794. 80. Krabbenborg, S. O.; Nicosia, C.; Chen, P.; Huskens, J., Reactivity mapping with electrochemical gradients for monitoring reactivity at surfaces in space and time. Nature Communications 2013, 4, 1667. 81. Min, H. K.; Oh, S. H.; Lee, J. M.; Im, G. I.; Lee, J. H., Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: In vitro evaluation on adipose-derived stem cell differentiation. Acta biomaterialia 2014, 10, 1272-1279. 82. Greiner, A. M.; Jäckel, M.; Scheiwe, A. C.; Stamow, D. R.; Autenrieth, T. J.; Lahann, J.; Franz, C. M.; Bastmeyer, M., Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion. Biomaterials 2014, 35, 611-619. 83. Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J., Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408, 998. 84. Zhu, Y.; Mao, Z.; Gao, C., Control over the Gradient Differentiation of Rat BMSCs on a PCL Membrane with Surface-Immobilized Alendronate Gradient. Biomacromolecules 2013, 14, 342-349. 85. Deng, X.; Friedmann, C.; Lahann, J., Bio-orthogonal “Double-Click” Chemistry Based on Multifunctional Coatings. Angewandte Chemie International Edition 2011, 50, 6522-6526. 86. Sun, H.-Y.; Fang, C.-Y.; Lin, T.-J.; Chen, Y.-C.; Lin, C.-Y.; Ho, H.-Y.; Chen, M. H. C.; Yu, J.; Lee, D.-J.; Chang, C.-H.; Chen, H.-Y., Surface Modification: Thiol-Reactive Parylenes as a Robust Coating for Biomedical Materials (Adv. Mater. Interfaces 6/2014). Advanced Materials Interfaces 2014, 1. 87. Chang, C.-H.; Yeh, S.-Y.; Lee, B.-H.; Hsu, C.-W.; Chen, Y.-C.; Chen, C.-J.; Lin, T.-J.; Hung-Chih Chen, M.; Huang, C.-T.; Chen, H.-Y., Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry B 2014, 2, 8496-8503. 88. Chen, H.-Y.; Hirtz, M.; Deng, X.; Laue, T.; Fuchs, H.; Lahann, J., Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. Journal of the American Chemical Society 2010, 132, 18023-18025. 89. Chen, H.-Y.; Rouillard, J.-M.; Gulari, E.; Lahann, J., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 11173-11178. 90. Chen, P.-J.; Shih, C.-Y.; Tai, Y.-C., Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate. Lab on a Chip 2006, 6, 803-810. 91. Wu, J.-T.; Wu, C.-Y.; Fan, S.-K.; Hsieh, C.-C.; Hou, Y.-C.; Chen, H.-Y., Customizable Optical and Biofunctional Properties of a Medical Lens Based on Chemical Vapor Deposition Encapsulation of Liquids. Chemistry of Materials 2015, 27, 7028-7033. 92. Chan, J. W.; Zhou, H.; Hoyle, C. E.; Lowe, A. B., Photopolymerization of Thiol-Alkynes: Polysulfide Networks. Chemistry of Materials 2009, 21, 1579-1585. 93. Hensarling, R. M.; Doughty, V. A.; Chan, J. W.; Patton, D. L., “Clicking” Polymer Brushes with Thiol-yne Chemistry: Indoors and Out. Journal of the American Chemical Society 2009, 131, 14673-14675. 94. Hoyle, C. E.; Lowe, A. B.; Bowman, C. N., Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chemical Society Reviews 2010, 39, 1355-1387. 95. Sun, T.-P.; Tai, C.-H.; Wu, J.-T.; Wu, C.-Y.; Liang, W.-C.; Chen, H.-Y., Multifaceted and route-controlled “click” reactions based on vapor-deposited coatings. Biomaterials Science 2016, 4, 265-271. 96. Fairbanks, B. D.; Scott, T. F.; Kloxin, C. J.; Anseth, K. S.; Bowman, C. N., Thiol−Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks. Macromolecules 2009, 42, 211-217. 97. Ross, D.; Locascio, L. E., Microfluidic Temperature Gradient Focusing. Analytical Chemistry 2002, 74, 2556-2564. 98. Mao, H.; Yang, T.; Cremer, P. S., A Microfluidic Device with a Linear Temperature Gradient for Parallel and Combinatorial Measurements. Journal of the American Chemical Society 2002, 124, 4432-4435. 99. Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials 2010, 23, 690-718. 100. Hersel, U.; Dahmen, C.; Kessler, H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385-4415. 101. Hoang, Q. Q.; Sicheri, F.; Howard, A. J.; Yang, D. S. C., Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003, 425, 977. 102. Chen, H. Y.; Lahann, J., Vapor-Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Advanced Materials 2007, 19, 3801-3808. 103. Chen, H.-Y.; Lahann, J., Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir 2011, 27, 34-48. 104. Chen, H.-Y.; Lin, T.-J.; Tsai, M.-Y.; Su, C.-T.; Yuan, R.-H.; Hsieh, C.-C.; Yang, Y.-J.; Hsu, C.-C.; Hsiao, H.-M.; Hsu, Y.-C., Vapor-based tri-functional coatings. Chemical Communications 2013, 49, 4531-4533. 105. Elkasabi, Y.; Chen, H. Y.; Lahann, J., Multipotent Polymer Coatings Based on Chemical Vapor Deposition Copolymerization. Advanced Materials 2006, 18, 1521-1526. 106. Murphy, W. L.; McDevitt, T. C.; Engler, A. J., Materials as stem cell regulators. Nature Materials 2014, 13, 547. 107. Fisher, O. Z.; Khademhosseini, A.; Langer, R.; Peppas, N. A., Bioinspired Materials for Controlling Stem Cell Fate. Accounts of Chemical Research 2010, 43, 419-428. 108. Stevens, M. M.; George, J. H., Exploring and Engineering the Cell Surface Interface. Science 2005, 310, 1135. 109. Cole, M. A.; Voelcker, N. H.; Thissen, H.; Griesser, H. J., Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 2009, 30, 1827-1850. 110. Yang, Y.-W.; Sun, Y.-L.; Song, N., Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research 2014, 47, 1950-1960. 111. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S., Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010, 9, 101. 112. Dolbier, W. R.; Beach, W. F., Parylene-AF4: a polymer with exceptional dielectric and thermal properties. Journal of Fluorine Chemistry 2003, 122, 97-104. 113. Senkevich, J. J.; Mitchell, C. J.; Vijayaraghavan, A.; Barnat, E. V.; McDonald, J. F.; Lu, T.-M., Unique structure/properties of chemical vapor deposited parylene E. Journal of Vacuum Science & Technology A 2002, 20, 1445-1449. 114. Vaeth, K. M.; Jensen, K. F., Selective Growth of Poly(p-phenylene vinylene) Prepared by Chemical Vapor Deposition. Advanced Materials 1999, 11, 814-820. 115. Chen, H.-Y.; Lai, J. H.; Jiang, X.; Lahann, J., Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Advanced Materials 2008, 20, 3474-3480. 116. Zhang, C.; Thompson, M. E.; Markland, F. S.; Swenson, S., Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Acta biomaterialia 2011, 7, 3746-3756. 117. Jeon, B.-J.; Kim, M.-H.; Pyun, J.-C., Application of a functionalized parylene film as a linker layer of SPR biosensor. Sensors and Actuators B: Chemical 2011, 154, 89-95. 118. Ko, H.; Lee, E.-H.; Lee, G.-Y.; Kim, J.; Jeon, B.-J.; Kim, M.-H.; Pyun, J.-C., One step immobilization of peptides and proteins by using modified parylene with formyl groups. Biosensors and Bioelectronics 2011, 30, 56-60. 119. Chen, H.-Y.; Rouillard, J.-M.; Gulari, E.; Lahann, J., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences 2007, 104, 11173. 120. Sun, H.-Y.; Fang, C.-Y.; Lin, T.-J.; Chen, Y.-C.; Lin, C.-Y.; Ho, H.-Y.; Chen, M. H. C.; Yu, J.; Lee, D.-J.; Chang, C.-H.; Chen, H.-Y., Thiol-Reactive Parylenes as a Robust Coating for Biomedical Materials. Advanced Materials Interfaces 2014, 1, 1400093. 121. Li, C.; Madsen, J.; Armes, S. P.; Lewis, A. L., A New Class of Biochemically Degradable, Stimulus-Responsive Triblock Copolymer Gelators. Angewandte Chemie International Edition 2006, 45, 3510-3513. 122. Roy, D.; Cambre, J. N.; Sumerlin, B. S., Future perspectives and recent advances in stimuli-responsive materials. Progress in Polymer Science 2010, 35, 278-301. 123. Szajewski, R. P.; Whitesides, G. M., Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. Journal of the American Chemical Society 1980, 102, 2011-2026. 124. Keire, D. A.; Strauss, E.; Guo, W.; Noszal, B.; Rabenstein, D. L., Kinetics and equilibria of thiol/disulfide interchange reactions of selected biological thiols and related molecules with oxidized glutathione. The Journal of Organic Chemistry 1992, 57, 123-127. 125. Cuozzo, J. W.; Kaiser, C. A., Competition between glutathione and protein thiols for disulphide-bond formation. Nature Cell Biology 1999, 1, 130. 126. Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M. J.; Ensari, S.; Pinkstaff, J. K.; Sullivan, L. M.; Biroc, S. L.; Cho, H.; Schultz, P. G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.-P.; Sapra, P., A general approach to site-specific antibody drug conjugates. Proceedings of the National Academy of Sciences of the United States of America 2014, 111, 1766-1771. 127. Castner, D. G.; Hinds, K.; Grainger, D. W., X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces. Langmuir 1996, 12, 5083-5086. 128. Xia, Y.; Whitesides, G. M., SOFT LITHOGRAPHY. Annual Review of Materials Science 1998, 28, 153-184. 129. Perl, A.; Reinhoudt, D. N.; Huskens, J., Microcontact Printing: Limitations and Achievements. Advanced Materials 2009, 21, 2257-2268. 130. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J., Preferential End-to-End Assembly of Gold Nanorods by Biotin−Streptavidin Connectors. Journal of the American Chemical Society 2003, 125, 13914-13915. 131. Forsberg, P.; Nikolajeff, F.; Karlsson, M., Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 2011, 7, 104-109. 132. Sun, T.; Wang, G.; Feng, L.; Liu, B.; Ma, Y.; Jiang, L.; Zhu, D., Reversible Switching between Superhydrophilicity and Superhydrophobicity. Angewandte Chemie International Edition 2004, 43, 357-360. 133. Zhang, M.; Desai, T.; Ferrari, M., Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 1998, 19, 953-960. 134. Cuozzo, J. W.; Kaiser, C. A., Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1999, 1, 130-135. 135. Abdelaziz Gorfti, M. l. S., Ge´rard Jaouen, Michael J. McGlinchey, Abdelaziz Bennouna, and Abdelhamid Mousser, Covalent and Selective Labeling of Proteins with Heavy Metals. Synthesis, X-ray Structure, and Reactivity Studies of N-Succinimidyl and N-Sulfosuccinimidyl Ester Organotungsten Complexes. Organometallics 1996, 15, 142-151. 136. Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M. J.; Ensari, S.; Pinkstaff, J. K.; Sullivan, L. M.; Biroc, S. L.; Cho, H.; Schultz, P. G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.-P.; Sapra, P., A general approach to site-specific antibody drug conjugates. Proceedings of the National Academy of Sciences 2014, 111, 1766-1771. 137. Liberelle, B. t.; Boucher, C.; Chen, J.; Jolicoeur, M.; Durocher, Y.; De Crescenzo, G., Impact of epidermal growth factor tethering strategy on cellular response. Bioconjug. Chem. 2010, 21, 2257-2266. 138. Lee, K. Y.; Peters, M. C.; Anderson, K. W.; Mooney, D. J., Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408, 998-1000. 139. Chrastil, J.; Low Jb Fau - Whang, P. G.; Whang Pg Fau - Patel, A. A.; Patel, A. A., Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine. Spine 38, E1020-E1027. 140. Kim, Y.-J.; Lee, M.-H.; Wozney, J. M.; Cho, J.-Y.; Ryoo, H.-M., Bone Morphogenetic Protein-2-induced Alkaline Phosphatase Expression Is Stimulated by Dlx5 and Repressed by Msx2. Journal of Biological Chemistry 2004, 279, 50773-50780. 141. Nohe, A.; Hassel, S.; Ehrlich, M.; Neubauer, F.; Sebald, W.; Henis, Y. I.; Knaus, P., The Mode of Bone Morphogenetic Protein (BMP) Receptor Oligomerization Determines Different BMP-2 Signaling Pathways. Journal of Biological Chemistry 2002, 277, 5330-5338. 142. Chen, H.-Y.; Lahann, J., Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir 2010, 27, 34-48. 143. Yuan, R. H.; Wu, C. Y.; Tung, H. Y.; Hsieh, H. P.; Li, Y. J.; Chiang, Y. C.; Chen, H. Y., Multifunctional Surface Modification: Facile and Flexible Reactivity toward a Precisely Controlled Biointerface. Macromolecular bioscience 2017, 17. 144. Chen, H. Y.; Lin, T. J.; Tsai, M. Y.; Su, C. T.; Yuan, R. H.; Hsieh, C. C.; Yang, Y. J.; Hsu, C. C.; Hsiao, H. M.; Hsu, Y. C., Vapor-based tri-functional coatings. Chemical communications 2013, 49, 4531-3. 145. Nandivada, H.; Chen, H. Y.; Bondarenko, L.; Lahann, J., Reactive polymer coatings that 'Click'. Angewandte Chemie 2006, 45, 3360-3. 146. Sun, T.-P.; Tai, C.-H.; Wu, J.-T.; Wu, C.-Y.; Liang, W.-C.; Chen, H.-Y., Multifaceted and route-controlled “click” reactions based on vapor-deposited coatings. Biomaterials Science 2016, 4, 265-271. 147. Guan, Z. Y.; Wu, C. Y.; Li, Y. J.; Chen, H. Y., Switching the Biointerface of Displaceable Poly-p-xylylene Coatings. ACS applied materials & interfaces 2015, 7, 14431-8. 148. Kurella, A.; Dahotre, N. B., Review paper: surface modification for bioimplants: the role of laser surface engineering. Journal of biomaterials applications 2005, 20, 5-50. 149. Chan, C. M. K., T. M.; Hiraoka, H., Polymer surface modification by plasmas and photons. Surface Science Reports 1996, 24, 1-54. 150. Zhao, H.; Sterner, E. S.; Coughlin, E. B.; Theato, P., o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012, 45, 1723-1736. 151. Gorham, W. F., A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4, 3027-3039. 152. Chen, Y. C.; Sun, T. P.; Su, C. T.; Wu, J. T.; Lin, C. Y.; Yu, J.; Huang, C. W.; Chen, C. J.; Chen, H. Y., Sustained immobilization of growth factor proteins based on functionalized parylenes. ACS applied materials & interfaces 2014, 6, 21906-10. 153. Kim, M. S.; Diamond, S. L., Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorganic & medicinal chemistry letters 2006, 16, 4007-10. 154. Debiossac, M.; Schatti, J.; Kriegleder, M.; Geyer, P.; Shayeghi, A.; Mayor, M.; Arndt, M.; Kohler, V., Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum. Physical chemistry chemical physics : PCCP 2018, 20, 11412-11417. 155. Mendes, P.; Belloni, M.; Ashworth, M.; Hardy, C.; Nikitin, K.; Fitzmaurice, D.; Critchley, K.; Evans, S.; Preece, J., A novel example of X-ray-radiation-induced chemical reduction of an aromatic nitro-group-containing thin film on SiO2 to an aromatic amine film. Chemphyschem : a European journal of chemical physics and physical chemistry 2003, 4, 884-9. 156. Cohen, S. G.; Baumgarten, R. J., Photoreduction of benzophenone by amines, alcohols, and hydrocarbons. Medium effects. Photochemical oxidative deamination. Journal of the American Chemical Society 1967, 89, 3471-3475. 157. Elkasabi, Y.; Lahann, J., Vapor-Based Polymer Gradients. Macromolecular Rapid Communications 2008, 30, 57-63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71513 | - |
| dc.description.abstract | 隨著生醫材料領域的發展,表面修飾技術不僅滿足於被動固定生物分子而沒有任何控制能力。從材料科學角度來看,控制生物界面分子修飾可利用許多物理或化學機制來實現。在本論文中,我們將基於不同功能性聚對二甲苯高分子化學氣相沉積鍍膜提出四種機制來控制表面修飾的生物分子進而達到材料生物界面之操控,包括:(一) 利用操控溶液相中的蛋白質混合物比例控制功能性蛋白質在表面的多重和競爭吸附。(二) 利用側鏈尾端反應性炔基進行雙反向點擊反應形成多功能連續反向生物分子梯度。(三) 利用帶有雙硫鍵官能基進行氧化還原硫醇-二硫化物交換反應置換表面功能性生物分子達到可切換與可編程生物界面。(四) 利用反應性末端基團和光化學斷鍵基團鄰硝基芐基達成可點擊反應和光化學分離的生物界面。藉由這四種可控制機制,精確的在時間和空間上操控了生物界面性質的表現如:表面親疏水性、細胞粘附、細胞增殖和幹細胞誘導分化等。
基於上述最先進的生物分子修飾技術,具操控性的仿生生物界面已經實現於聚對二甲苯高分子塗層上。 | zh_TW |
| dc.description.abstract | Surface modification does not satisfy with passively immobilizing biomolecules without any controllable ability. Controllable biomolecules modification on biointerface can be realized by several physical or chemical mechanisms. In this work presented herein, four types of controllable mechanisms were realized as followed: (i) Multiple and competing adsorption of functional proteins based on the composition of proteins mixture in the solution phase. (ii) Multifunctional and continuous gradients based on dual reverse click reactions. (iii) Switchable and programmable biointerface based on thiol-disulfide interchange reaction. (iv) Clickable and photo-cleavable biointerface based on ortho-nitrobenzyl photo-chemistry. This four strategies were proposed to control biomolecules modified on the surface based on different functionalized poly-para-xylylene coatings synthesized via chemical vapor deposition (CVD) polymerization. Based on the controllable biomolecules modification described above, the biointerface properties, including wettability, cell adhesion, proliferation, differentiation and etc., were manipulated over temporal and spatial dimensions, and the new advanced and biomimic biointerface has been available on poly‑p‑xylylene coatings. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:02:13Z (GMT). No. of bitstreams: 1 ntu-108-F03549004-1.pdf: 8467610 bytes, checksum: 9a41486139a8f251c989d6e49be537ff (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III Table of Content X List of Figures XIV List of Tables XXVII Chapter 1 Introduction 1 1.1 Surface Modification of Biointerfaces 1 1.2 Functionalized Poly-para-xylylene via CVD Polymerization Process 2 1.3 Specific Aims: Controllable Biomolecules Modification 3 Chapter 2 Controlling Multi-function of Biomaterials Interfaces Based on Multiple and Competing Adsorption of Functional Proteins 5 2.1 Introduction 5 2.2 Methods 8 2.2.1 Surface Modification of Parylene-C Coating 8 2.2.2 Protein Adsorption 8 2.2.3 Characterizations 9 2.2.4 Cell Proliferation 11 2.2.5 Osteogenic Activities 12 2.3 Results and Discussion 14 2.3.1 Sole Adsorption of Functional Protein on Parylene-C Surface 15 2.3.2 Combined and Competing Adsorption of Functional Proteins 21 2.3.2 Topography and Nanomechanical Properties 24 2.3.3 Multifaceted and Synergistic Biological Activities 27 2.4 Conclusions 32 Chapter 3 Multifunctional and Continuous Gradients of Biointerfaces Based on Dual Reverse Click Reactions 33 3.1 Introduction 33 3.2 Methods 35 3.2.1 CVD Polymerization 35 3.2.2 Click Reactions and Immobilizations 36 3.2.3 Surface Characterizations 38 3.2.4 Cell Culture 39 3.3 Results and Discussion 41 3.3.1 Dual Reversed Gradient Based on Two Steps Click Reactions 42 3.3.2 Cell Attachment on Dual Reversed Gradient Surface 46 3.3.3 Divergent Biological Properties on Dual Reversed Gradient Surface 50 3.4 Conclusions 56 Chapter 4 Switchable and Programmable Biointerface Based on Displaceable Poly‑p‑xylylene Coatings 57 4.1 Introduction 57 4.2 Methods 60 4.2.1 CVD Polymerization 60 4.2.2 Surface Characterizations 61 4.2.3 Thiol-Redox and Disulfide Interchange Reaction 63 4.2.4 Wettability 65 4.2.5 Cell Adhesion 66 4.2.6 Growth Factor Immobilization and Displacement 68 4.2.7 Cell Proliferation and Osteogenesis 69 4.3 Results and Discussion 72 4.3.1 Characterizations of Parylene S-S Coating 74 4.3.2 Displacing Ability of Parylene S-S Coating 78 4.3.3 Switching Ability of Parylene S-S Coating 84 4.3.4 Switching of Surface Wettability 86 4.3.5 Switching of Cell Adhesion Property 88 4.3.6 Stepwise and Programmable Growth Factor Displacement 91 4.3.7 Activation and Deactivation of Biological Function 96 4.3.8 Programmable Controlled Stem Cells Differentiation Pathways 104 4.4 Conclusions 108 Chapter 5 Clickable and Photo-cleavable Biointerface Based on Ortho-nitrobenzyl Substituted Poly‑p‑xylylene Coatings 109 5.1 Introduction 109 5.2 Methods 111 5.2.1 CVD Polymerization 111 5.2.2 Characterizations 112 5.2.3 Immobilization and Localized Photo-Displacement 113 5.2.4 Wettability 115 5.2.5 Cell adhesion 116 5.3 Results and Discussion 118 5.3.1 Characterizations of Clickable/Cleavable Parylene Coating 122 5.3.2 Localized Photo-Cleavage/Re-Installation 129 5.3.3 Cell Pattern Based on Localized Photo-Cleavage/Re-Installation 134 5.4 Conclusions 137 Chapter 6 Conclusions 138 6.1 Summary of Controllable Biomolecules Modification 138 6.2 Future Directions 139 References 141 | |
| dc.language.iso | en | |
| dc.subject | 可控制生物分子修飾 | zh_TW |
| dc.subject | 聚對二甲苯鍍膜 | zh_TW |
| dc.subject | 多蛋白吸附 | zh_TW |
| dc.subject | 雙反向梯度 | zh_TW |
| dc.subject | 可切換表面 | zh_TW |
| dc.subject | 光化學分離表面 | zh_TW |
| dc.subject | photo-cleavable surface | en |
| dc.subject | poly-para-xylylene | en |
| dc.subject | multiprotein adsorption | en |
| dc.subject | controllable biomolecules modification | en |
| dc.subject | dual reverse gradient | en |
| dc.subject | switchable surface | en |
| dc.title | 利用氣相多功能高分子鍍膜於生物分子工程及材料生物界面現象之操控 | zh_TW |
| dc.title | Vapor-Phased Multifunctional Polymer Coatings for Biomolecular and Biointerface Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 康敦彥(Dun-Yen Kang),游佳欣(Jiashing Yu),黃聲東(Sheng-Tung Huang),陳柏均(Po-Chun Chen) | |
| dc.subject.keyword | 可控制生物分子修飾,聚對二甲苯鍍膜,多蛋白吸附,雙反向梯度,可切換表面,光化學分離表面, | zh_TW |
| dc.subject.keyword | controllable biomolecules modification,poly-para-xylylene,multiprotein adsorption,dual reverse gradient,switchable surface,photo-cleavable surface, | en |
| dc.relation.page | 152 | |
| dc.identifier.doi | 10.6342/NTU201900329 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 8.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
