請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71510完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智星 | |
| dc.contributor.author | Tien-Chih Lee | en |
| dc.contributor.author | 李天智 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:02:09Z | - |
| dc.date.available | 2021-02-12 | |
| dc.date.copyright | 2019-02-12 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-01-30 | |
| dc.identifier.citation | [1] John G. Proakis and Dimitris G Manolakis. ”digital signal processing (4th ed.)”.New Delhi: Pearson Prentice Hall., 2007.
[2] C.-T. Sun J.-S. R. Jang and E. Mizutani. ”neuro-fuzzy and soft computing”. Prentice Hall, 1996. [3] D. R. Morgan S. M. Kuo. ”active noise control: A tutorial review”. Proceedings of the IEEE, 87(6):943–972, June 1999. [4] Syed Shah, Raza Samar, Noor Khan, and Muhammad Asif Zahoor Raja. Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dynamics, 85, 04 2016. [5] A.V. Oppenheim, Ehud Weinstein, Kambiz Zangi, Meir Feder, and Dan Gauger. Single-sensor active noise cancellation. Speech and Audio Processing, IEEE Transactions on, 2:285 – 290, 05 1994. [6] Pooi Mun Wong, Lu-Ean Ooi, Ko Ying hao, and Choe Yung Teoh. Comparative study of adaptive filter in noise cancellation. 07 2018. [7] Mugdha Dewasthale, R D. Kharadkar, and Mrunali Bari. Comparative performance analysis and hardware implementation of adaptive filter algorithms for acoustic noise cancellation. pages 124–129, 12 2015. [8] Shubhra Dixit and Deepak Nagaria. Design and analysis of cascaded lms adaptive filters for noise cancellation. Circuits, Systems, and Signal Processing, 36, 05 2016. [9] A. H. Sayed and T. Kailath. ”recursive least-squares adaptive filters”. Digit. Signal Process. Handbook, 1999. [10] Paulo S. R. Diniz. ”adaptive filtering algorithms and practical implementation 2nd ed”. Springer, 2002. [11] Jyh-Shing Roger Jang. ”audio signal processing and recognition”. http://mirlab.org/jang/books/audiosignalprocessing/. [12] C. Paleologu, A. A. Enescu, and S. Ciochina. Recursive least-squares lattice adaptive algorithm suitable for fixed-point implementation. In 2006 13th IEEE International Conference on Electronics, Circuits and Systems, pages 1105–1108, Dec 2006. [13] Jenq-Tay Yuan. Qr-decomposition-based least-squares lattice interpolators. Signal Processing, IEEE Transactions on, 48:70 – 79, 02 2000. [14] Jenq-Tay Yuan and Chih-An Chiang. A recursive least-squares (rls) algorithm based on interpolation lattice recursion. volume 1, pages 1176 – 1181, 05 2006. [15] Leonardo Rey Vega, Hernan Rey, Jacob Benesty, and Sara Tressens. A fast robust recursive least-squares algorithm. IEEE Transactions on Signal Processing, 57:1209–1216, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71510 | - |
| dc.description.abstract | 目前手機上有許多卡拉OK的APP,主要的功能是讓使用者選擇喜歡的歌曲伴奏並錄製歌唱。其中多數的APP有一項功能是歌唱評分,評分標準是根據使用者唱歌的音準。然而因為背景伴奏的干擾下,這類評分往往不夠準確, 本論文的目的是希望能透過可適性濾波器 (Adaptive Filtering)的方法來消除背景伴奏的干擾,以達到更加準確的歌聲評分。
本論文包含兩個實驗。第一項實驗是將手機錄音過程看為一個線性非時變系統(Linear, Time-Invariant System),並找出一個合適的濾波器階數(Filter Order),此濾波器是用來模擬系統的脈衝響應(Impulse Response)。第一項實驗的資料是將手機放在四種不同環境下的錄音資料,在床上,書桌上,浴室裡,以及拿在手上。計算濾波器的方法是使用最小平方法(Least Square Estimation)。 第二項實驗使用了四個可適性濾波器的方法,將卡拉OK錄音中的背景伴奏消除之後,再使用音高偵測(Pitch Tracking)的方法來評分人聲。最後會比較這四個可適性濾波器方法所得出的音高偵測結果以及演算法的計算速度。 | zh_TW |
| dc.description.abstract | There are many kind of karaoke apps on mobile devices. One feature of these karaoke apps is the functionality of scoring a user's singing based on pitch tracking. However, the scoring might be inaccurate if the singing voice is mixed together with the background audio. The objective of this thesis is to evaluate some adaptive filtering methods and try to subtract the background audio from the mixture signal to extract vocal part in order to enhance the accuracy of pitch tracking.
The are two types of experiment in this thesis. First, modeling the mobile device's recording process as a linear, time-invariant system, a suitable order of the system's impulse response is chosen based on the first experiment result. In the first experiment, recordings are taken under four different environment, bathroom, bed, desktop, and holding by hands, and then a filter with suitable order to approximate to the system's impulse response is calculated by solving least squares problem. In the second experiment, four adaptive filtering methods are implemented and applied on some karaoke recordings to subtract the background audio, and then the resulting vocal part is processed for the pitch tracking using auto-correlation method. The pitch tracking results are compared with ground truth data for accuracy. Finally, four adaptive filtering methods are evaluated and compared in terms of pitch tracking accuracy and time complexity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:02:09Z (GMT). No. of bitstreams: 1 ntu-108-P04922005-1.pdf: 2868555 bytes, checksum: 56101e448a25e3237ea109449cab1277 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgments i 摘要ii Abstract iii Table of Contents iv List of Figures vi List of Tables viii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Chapters Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Order of System’s Impulse Response 4 2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Corpus for the First Experiment . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Steps in Calculating the Impulse Response and the Best Order . . . . . . 7 2.3.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Order Determination by Cross Validation . . . . . . . . . . . . . 9 2.4 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Adaptive Filtering Methods 14 3.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Corpus for Pitch Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Corpus Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Least Mean Square (LMS) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 LMS With Least Squares Once (LMS+LS) . . . . . . . . . . . . . . . . . 18 3.5 Recursive Least Squares (RLS) . . . . . . . . . . . . . . . . . . . . . . . 19 3.5.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5.2 Estimation Errors and the Conversion Factor . . . . . . . . . . . 24 3.5.3 Choosing λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.6 Lattice Recursive Least Squares (LRLS) . . . . . . . . . . . . . . . . . . 25 3.6.1 Order Recursive Update . . . . . . . . . . . . . . . . . . . . . . 25 3.6.2 Joint Process Estimation . . . . . . . . . . . . . . . . . . . . . . 26 3.6.3 Backward Prediction Problem . . . . . . . . . . . . . . . . . . . 28 3.6.4 Forward Prediction Problem . . . . . . . . . . . . . . . . . . . . 31 3.6.5 Introduction to Some Parameters . . . . . . . . . . . . . . . . . . 33 3.6.6 Summary of LRLS Formula . . . . . . . . . . . . . . . . . . . . 35 3.6.7 Summary of LRLS Algorithm Based on A Posteriori Errors . . . 36 3.7 Pitch Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8.1 ANC Result of the Song: Just The Way You Are . . . . . . . . . 38 3.8.2 Pitch Tracking Result of the Song: Just The Way You Are . . . . 41 4 Conclusions and Future Work 47 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References 49 List of Figures 1.1 Block diagram of ANC system . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Impulse Response of Mobile Device . . . . . . . . . . . . . . . . . . . . 5 2.2 Optimal filter of the song: ”wherever you will go”. Top plot: RMSE vs. orders of system ID. Middle plot: Running time of least square estimation for different orders. Bottom plot: Optimal filter coefficients. . . . . . . . 11 2.3 Optimal filter of the song: ”you and me” Top plot: RMSE vs. orders of system ID. Middle plot: Running time of least square estimation for different orders. Bottom plot: Optimal filter coefficients. . . . . . . . . . 12 2.4 Histograms of the best order of the four recording environment . . . . . . 13 3.1 Adaptive Filtering Framework . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Background Audio Subtraction Process . . . . . . . . . . . . . . . . . . 15 3.3 LMS With Least Squares Once . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Operation of ACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 Method: fixed-filter, Order:300, Time ratio: 0.0123. Top plot: Recorded signal via mobile device. Middle plot: Simulated anti-noise signal by ANC method. Bottom plot: Extracted vocal. . . . . . . . . . . . . . . . . 39 3.6 Method: LMS, Order:300, Time ratio: 0.0899. Top plot: Recorded signal via mobile device. Middle plot: Simulated anti-noise signal by ANC method. Bottom plot: Extracted vocal. . . . . . . . . . . . . . . . . . . . 39 3.7 Method: LMS With Least Squares Once, Order:300, Time ratio: 0.0949. Top plot: Recorded signal via mobile device. Middle plot: Simulated anti-noise signal by ANC method. Bottom plot: Extracted vocal. . . . . . 40 3.8 Method: RLS, Order:300, λ: 0.9995, Time ratio: 16.0490. Top plot: Recorded signal via mobile device. Middle plot: Simulated anti-noise signal by ANC method. Bottom plot: Extracted vocal. . . . . . . . . . . 40 3.9 Method: LRLS, Order:300, λ: 0.9995, Time ratio: 0.1194. Top plot: Recorded signal via mobile device. Middle plot: Simulated anti-noise signal by ANC method. Bottom plot: Extracted vocal. . . . . . . . . . . 41 3.10 Method: fixed-filter, Accuracy: 0.4253. Top plot: Pitch of ground truth. Middle plot: Pitch of extracted vocal via ANC method. Bottom plot: Difference of ground truth pitch and extracted vocal pitch. . . . . . . . . . . 42 3.11 Method: LMS, Accuracy: 0.8515. Top plot: Pitch of ground truth. Middle plot: Pitch of extracted vocal via ANC method. Bottom plot: Difference of ground truth pitch and extracted vocal pitch. . . . . . . . . . . . . 42 3.12 Method: LMS With Least Squares Once, Accuracy: 0.8523. Top plot: Pitch of ground truth. Middle plot: Pitch of extracted vocal via ANC method. Bottom plot: Difference of ground truth pitch and extracted vocal pitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.13 Method: RLS, Accuracy: 0.8599. Top plot: Pitch of ground truth. Middle plot: Pitch of extracted vocal via ANC method. Bottom plot: Difference of ground truth pitch and extracted vocal pitch. . . . . . . . . . . . . . . 43 3.14 Method: LRLS, Accuracy: 0.8599. Top plot: Pitch of ground truth. Middle plot: Pitch of extracted vocal via ANC method. Bottom plot: Difference of ground truth pitch and extracted vocal pitch. . . . . . . . . . . . . 44 3.15 Pitch tracking accuracy of 25 songs . . . . . . . . . . . . . . . . . . . . 45 3.16 Average pitch tracking accuracy of 25 songs . . . . . . . . . . . . . . . . 45 3.17 Average pitch tracking accuracy VS time ratio . . . . . . . . . . . . . . . 46 List of Tables 2.1 Corpus for the First Experiment . . . . . . . . . . . . . . . . . . . . . . 7 3.1 Average pitch tracking accuracy and time ratio . . . . . . . . . . . . . . . 46 | |
| dc.language.iso | en | |
| dc.subject | 可適性濾波器 | zh_TW |
| dc.subject | 最小均方濾波器 | zh_TW |
| dc.subject | 遞迴最小平方法 | zh_TW |
| dc.subject | LRLS (Lattice Recursive Least Squares) | en |
| dc.subject | LMS (Least Mean Square) | en |
| dc.subject | RLS (Recursive Least Squares) | en |
| dc.subject | adaptive filtering | en |
| dc.title | 使用可適性濾波器方法消除手機錄音時的背景聲音 | zh_TW |
| dc.title | Background Audio Subtraction in Mobile App Recording Using Adaptive Filtering Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善,張瑞峰,陳永耀 | |
| dc.subject.keyword | 可適性濾波器,最小均方濾波器,遞迴最小平方法, | zh_TW |
| dc.subject.keyword | adaptive filtering,LMS (Least Mean Square),RLS (Recursive Least Squares),LRLS (Lattice Recursive Least Squares), | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201900320 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-01-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
