Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳其誠
dc.contributor.authorChih-Kai Fangen
dc.contributor.author方致凱zh_TW
dc.date.accessioned2021-06-17T06:02:06Z-
dc.date.available2019-02-12
dc.date.copyright2019-02-12
dc.date.issued2019
dc.date.submitted2019-01-30
dc.identifier.citation[1] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press,1997.
[2] Atkin, A. O. L., Lehner, J. , Hecke operators on Γ0(m), Mathematische Annalen,185 no. 2(1970) 134-160.
[3] Breuil, Christophe, Conrad, Brian, Diamond, Fred, Taylor, Richard, On the modularity of elliptic curves over Q: wild 3-adic exercises, Journal of the American Mathematical Society, 14 no. 4(2001), 843-939.
[4] Deligne, Pierre, Formes modulaires et repr´esentations l-adiques, S´eminaire Bourbakivol. 1968/69, Expos´es 347-363, Lecture Notes in Mathematics, 179, Berlin, New York, Springer-Verlag.
[5] Deligne, Pierre, La conjecture de Weil. I., Publications Math´ematiques de l’IHES, ´43(1974) 273-307.
[6] Knapp, Anthony W. , Elliptic Curves Volume 40 of Mathematical notes, PrincetonUniversity Press, 1992.
[7] B. Mazur, and P. Swinnerton-Dyer, Arithmetic of Weil Curves, Invent. Math.25(1974), 1-61.
[8] B. Mazur, and J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures ofBirch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1-48.
[9] B. Mazur, and J. Tate, Refined conjectures the of Birch and Swinnerton-Dyer type,Duke Mathematical Journal, Vol.54, No. 2(1987), 711-750.
[10] Ju I, Manin, Parabolic Points and Zeta-Functions of Modular Curves, Izvestiya:Mathematics, Volume 6, Issue 1(1972), 19-64.
[11] J.S. Milne, Elliptic Curves, BookSurge Publishers, 2006.
[12] Shimura, Goro, Introduction to the Arithmetic Theory of Automorphic Functions,Princeton University Press, 1994.
[13] Silverman, Joseph H, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,New York, 1986.
[14] Silverman, Joseph H, Advanced Topics in the Arithmetic of Elliptic Curves, GTM151, Springer-Verlag, New York, 1994.
[15] Wiles, Andrew, Modular elliptic curves and Fermat’s last theorem, Annals of Mathematics, Second Series, 141, no. 3(1995), 443-551.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71508-
dc.description.abstract橢圓曲線的狄利克雷級數在 s=1 上的階是大家所感興趣的。Mazur、Tate 和
Teitelbaum 發現一個可以計算經扭變後的橢圓曲線的狄利克雷級數在特殊點 s=1 上
是否為零點的方法。這涉及到計算模符號。本篇論文主要內容是在於整理他們所給
出的方法後,同時提出一個完整的演算法列表計算出扭變後的橢圓曲線的狄利克
雷級數在特殊點 s=1 上是否為零點。
zh_TW
dc.description.abstractThe order of the Dirichlet series of the elliptic curve at s=1 is of interest to everyone.
Mazur, Tate, and Teitelbaum found a way to calculate whether the Dirichlet series of the
twisted elliptic curve has a zero at the particular point s=1. This involves calculating the
modulo symbol. The aim of this paper is to sort out the methods they have given, and at
the same time propose a complete list of algorithms to calculate whether the Dirichlet
series of the twisted elliptic curve has a zero at the special point s=1.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:02:06Z (GMT). No. of bitstreams: 1
ntu-108-R03221010-1.pdf: 709909 bytes, checksum: 0802684c2e9b19f5509740ab77eaa489 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書...........................................................................................................#
誌謝................................................................................................................................... i
中文摘要.......................................................................................................................... ii
ABSTRACT .................................................................................................................... iii
CONTENTS .................................................................................................................... iv
Chapter 1 Introduction..............................................................................................1
Chapter 2 Elliptic Curves and the Associated L-functions....................................3
2.1 Elliptic curves.................................................................................................3
2.2 The minimal Weierstrass equation..................................................................4
2.3 The reduction modulo p..................................................................................5
2.4 The conductor.................................................................................................5
2.5 The number ap ............................................................................................... 6
2.6 L-functions associated to E ............................................................................. 6
2.7 The invariant differential ................................................................................ 7
Chapter 3 Elliptic Curves and the Associated L-functions .................................... 8
3.1 The Modular Curve X0(N) ............................................................................. 8
3.2 The Index |Γ:Γ0(N)| ..................................................................................... 8
3.3 The Equivalent Classes of Cusps .................................................................. 10
3.4 The genus of X0(N) ...................................................................................... 12
3.5 Elliptic points on X0(N) ............................................................................... 12
3.6 Modular Forms ............................................................................................. 14
3.7 Hecke Operators ........................................................................................... 15
3.8 Modularity theorem ...................................................................................... 16
3.9 Mellin Transformation .................................................................................. 16
Chapter 4 Modular Symbols ................................................................................... 19
4.1 The Dual Space S2(N)∗ ............................................................................... 19
4.2 The Symbol {α,β} ......................................................................................... 22
4.3 Computing H1(X(N)(ℂ),ℤ) ........................................................................ 24
4.4 Dual Hecke Operators on H1(X(N)(ℂ),ℤ) ................................................... 26
4.5 The eigenspaces of Tp∗ .................................................................................. 28
4.6 The eigenspace of τ ....................................................................................... 29
4.7 Summary ....................................................................................................... 30
Bibliography .................................................................................................................... 32
dc.language.isoen
dc.subject橢圓曲線zh_TW
dc.subject狄利克雷級數zh_TW
dc.subject模形式zh_TW
dc.subject赫克算子zh_TW
dc.subject模符號zh_TW
dc.subjectelliptic curveen
dc.subjectmodular symbolsen
dc.subjectmodular formsen
dc.subjectHecke operatorsen
dc.subjectDirichlet seriesen
dc.title決定橢圓曲線上 L 函數的特殊零點zh_TW
dc.titleDetermining the Special Zero of an L-function Associated to an Elliptic Curveen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王藹農,紀文鎮
dc.subject.keyword橢圓曲線,狄利克雷級數,模形式,赫克算子,模符號,zh_TW
dc.subject.keywordelliptic curve,Dirichlet series,modular forms,Hecke operators,modular symbols,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201900282
dc.rights.note有償授權
dc.date.accepted2019-01-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
693.27 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved