Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟(Chung-Chih Wu)
dc.contributor.authorYu-Hsin Huangen
dc.contributor.author黃宇薪zh_TW
dc.date.accessioned2021-06-17T06:01:21Z-
dc.date.available2025-11-24
dc.date.copyright2020-12-25
dc.date.issued2020
dc.date.submitted2020-11-25
dc.identifier.citationCh.1.
[1] M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042, 1963.
[2] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913, 1987.
[3] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610, 1989.
[4] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151-154, 1998.
[5] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234, 2012.
[6] C.-Y Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H.-Y. Lin, and C.-C. Wu, Adv. Mater., 27, 4833-4888, 2015.
[7] H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, M. C. Gather, J. Appl. Phys., 113, 204502, 2013.
[8] T.-W. Koh, J.-M. Choi, S. Lee, S. Yoo, Adv. Mater. 22, 1849, 2010.
[9] Q.-D. Ou, L. Zhou, Y.-Q. Li, S. Shen, J.-D. Chen, C. Li, O.-K. Wang, S.-T. Lee, J.-X. Tang, Adv. Funct. Mater., 24, 7249, 2014.
[10] C.-Y Chen, Y.-J. Chen, W.-K. Lee, C.-Y. Lu, H.-Y. Lin, and C.-C. Wu, Opt. Exp., 24, A810, 2016.
[11] L.-K. Li, M.-C. Tang, S.-L. Lai, M. Ng, W.-K. Kwok, M.-Y. Chan, and Vivian W.- W. Yam, Nat. Photon., 13, 185, 2019.
[12] K. T. Ly, R.-W. C.-Chen, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, and Y.- Chi, Nat. Photon., 11, 63, 2017.
[13] T. Fleetham, G. Li, and J. Li, Adv. Mater., 29, 1601861, 2016.
[14] K.-H. Kim, J.-L. Liao, S. W. Lee, B. Sim, C.-K. Moon, G.-H. Lee, H. J. Kim, Y. Chi, and J.-J. Kim, Adv. Mater., 28, 2526, 2016.
[15] Y. Yuan, J.-L. Liao, S.-F. Ni, A. K.-Y. Jen, C.-S. Lee, and Y. Chi, Adv. Funct. Mater., 30, 1906738, 2020.
[16] T.-A. Lin, T. Chatterjee, W.-K. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, and C.-C. Wu, Adv. Mater., 28, 6976, 2016.
[17] D.-H. Ahn, S. W. Kim, H. Lee, I.-J. Ko, D. Karthik, J. Y. Lee, and J.-H. Kwon, Nat. Photon., 13, 540, 2019.
[18] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. C.-Cheng, H.-W. Lin, R.-S. Liu, and C.-H Cheng, Nat. Photon., 12, 235, 2018.
[19] Y.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hanisch, S. Reineke, J. Fan, and L.-S. Liao, Adv. Mater., 31, 1902368, 2019.
CH.2.
[1] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151, 1998.
[2] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 492, 234, 2012.
[3] C.-Y. Kuei, W.-L. Tsai, B. Tong, M. Jiao, W.-K. Lee, Y. Chi, C.-C. Wu, S.-H. Liu, G.-H. Lee, P.-T. Chou, Adv. Mater., 28, 2795, 2016.
[4] T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater., 28, 6976, 2016.
[5] D. W. Kim, J. W. Han, K. T. Lim, and Y. H. Kim, ACS Mater. Interfaces., 10, 985-991, 2018.
[6] C. Hippola, R. Kaudal, E. Manna, T. Xiao, A. Peer, R. Biswas, W. D. Slafer, T. Trovato, J. Shianr, and R. Shinar, Adv. Opt. Mat., 6, 1701244, 2018.
[7] H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, M. C. Gather, J. Appl. Phys., 113, 204502, 2013.
[8] Y. Sun, S. R. Forrest, Nat. Photonics, 2, 483, 2008.
[9] T.-W. Koh, J.-M. Choi, S. Lee, S. Yoo, Adv. Mater., 22, 1849, 2010.
[10] Y. Qu, C. Coburn, D. Fan, S. R. Forrest, ACS Photon. 4, 2, 363-368, 2017.
[11] S. Jeon, J.-H. Jeong, Y. S. Song, W.-I. Jeong, J.-J. Kim, J. R. Youn, Nanoscale, 6, 2642, 2014.
[12] C.-Y. Chen, W.-K. Lee, Y.-J. Chen, C.-Y. Lu, H. Y. Lin, C.-C. Wu, Adv. Mater., 27, 4883, 2015.
[13] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Nat. Photonics, 4, 222, 2010.
[14] Q.-D. Ou, L. Zhou, Y.-Q. Li, S. Shen, J.-D. Chen, C. Li, O.-K. Wang, S.-T. Lee, J.-X. Tang, Adv. Funct. Mater., 24, 7249, 2014.
[15] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature, 459, 234, 2009.
[16] J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brutting, Org. Electron., 12, 809, 2011.
[17] C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater., 24, 5232, 2014.
[18] J. W. Sun, J.-H. Lee, C.-K. Moon, K.-H. Kim, H. Shin, J.-J. Kim, Adv. Mater., 26, 5684, 2014.
[19] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. C.-Cheng, H.-W. Lin, R.-S. Liu, and C.-H Cheng, Nat. Photon., 12, 235, 2018.
[20] H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, J.-J. Kim, Adv. Mater., 28, 4920, 2016.
[21] Y.-H. Huang, W.-L. Tsai, W.-K. Lee, M. Jiao, C.-Y. Lu, C.-Y. Lin, C.-Y. Chen, C.-C. Wu, Adv. Mater., 27, 929, 2015.
[22] C. Fuchs, P.-A. Will, M. Wieczorek, M. C. Gather, S. Hofmann, S. Reineke, K. Leo, R. Scholz, Phys. Rev. B, 92, 245306, 2015.
[23] S.-Y. Kim, J.-J. Kim, Org. Electron., 11, 1010, 2010.
[24] M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater., 29, 8630, 2017.
[25] L. Miaoa, P. Jinb, K. Kanekoc, A. Teraid, N. Nabatova-Gabaind, S. Tanemura, Appl. Surf. Sci., 212–213, 255, 2003.
[26] T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, and T. Hasegawa, Phys. Status Solidi A, 207, 1529, 2010.
[27] S. Okazaki, J. Ohkubo, S. Nakao, Y. Hirose, T. Hitosugi, and T. Hasegawa, Jpn. J. Appl. Phys., 51, 118003, 2012.
[28] T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada and T. Hasegawa, Jpn. J. Appl.Phys., 44, L1063, 2005.
[29] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 30, 1704961, 2018.
[30] G. Ge, J. He, H. Guo, F. Wang, D. Zou, J. Organomet. Chem., 694, 3050, 2009.
[31] M. Sarma, W.-L. Tsai, W.-K. Lee, Y. Chi, C.-C. Wu, S.-H. Liu, P.-T. Chou, K.-T. Wong, Chem, 3, 461, 2017.
[32] K.-C. Tien, M.-S. Lin, Y.-H. Lin, C.-H. Tsai, M.-H. Shiu, M.-C. Wei, H.-C. Cheng, C.-L. Lin, H.-W. Lin, C.-C. Wu, Org. Electron., 11, 397, 2010.
[33] R. H. Jordan, L. J. Rothberg, A. Dodabalapur, R. E. Slusher, Appl. Phys. Lett., 69, 1997, 1996.
Ch.3.
[1] a) S. K. Jeon, H. L. Lee, K. S. Yook, J. Y. Lee, Adv. Mater., 31, 1803524, 2019; b) Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater., 3, 18020, 2018; c) M. Y. Wong, E. Zysman-Colman, Adv. Mater., 29, 1605444, 2017.
[2] a) M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun., 7, 13680, 2016; b) P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc., 139, 4042, 2017.
[3] a) D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photon., 13, 540, 2019; b) X. Liang, Z.-P. Yan, H.-B. Han, Z.-G. Wu, Y.-X. Zheng, H. Meng, J.-L. Zuo, W. Huang, Angew. Chem., 130, 11486, 2018; Angew. Chem. Int. Ed., 57, 11316, 2018; c) T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater., 28, 6976, 2016; d) M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater., 29, 8630, 2017; e) T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photon., 12, 235, 2018; f) D. Zhang, X. Song, A. J. Gillett, B. H. Drummond, S. T. E. Jones, G. Li, H. He, M. Cai, D. Credgington, L. Duan, Adv. Mater., 32, 1908355, 2020.
[4] J. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater., 6, 1800255, 2018.
[5] X. Gong, P. Li, Y.-H. Huang, C.-Y. Wang, C.-H. Lu, W.-K. Lee, C. Zhong, Z. Chen, W. Ning, C.-C. Wu, S. Gong, C. Yang, Adv. Funct. Mater., 30, 1908839, 2020.
[6] a) J.-X. Chen, W.-W. Tao, W.-C. Chen, Y.-F. Xiao, K. Wang, C. Cao, J. Yu, S. Li, F.-X. Geng, C. Adachi, C.-S. Lee, X.-H. Zhang, Angew. Chem., 131, 14802, 2019; Angew. Chem. Int. Ed., 58, 14660, 2019; b) Q. Zhang, H. Kuwabara, W. J. Potscavage Jr, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc., 136, 18070, 2014.
[7] a) K.-H. Kim, J.-J. Kim, Adv. Mater., 30, 1705600, 2018; b) C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater., 24, 5232, 2014; c) X. Zeng, K.-C. Pan, W.-K. Lee, S. Gong, F. Ni, X. Xiao, W. Zeng, Y. Xiang, L. Zhan, Y. Zhang, C.-C. Wu, C. Yang, J. Mater. Chem. C, 7, 10851, 2019.
[8] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 30, 1704961, 2018.
[9] Y.-L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L.-S. Liao, Adv. Mater., 31, 1902368, 2019.
[10] a) P. L. dos Santos, J. S. Ward, D. G. Congrave, A. S. Batsanov, J. Eng, J. E. Stacey, T. J. Penfold, A. P. Monkman, M. R. Bryce, Adv. Sci., 5, 1700989, 2018; b) K. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc., 140, 8877, 2018; c) Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon., 8, 326, 2014.
[11] C.-W. Huang, K.-Y. Peng, C.-Y. Liu, T.-H. Jen, N.-J. Yang, S.-A. Chen, Adv. Mater., 20, 3709, 2008.
[12] a) W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong, C.-C. Wu, Chem. Commun., 51, 13662, 2015; b) J. H. Yun, J. Y. Lee, Dyes Pigments, 144, 212, 2017.
[13] N. A. Drigo, L. G. Kudriashova, S. Weissenseel, A. Sperlich, A. J. Huckaba, M. K. Nazeeruddin, V. Dyakonov, J. Phys. Chem. C, 122, 22796, 2018.
[14] a) T. Hu, G. Han, Z. Tu, R. Duan, Y. Yi, J. Phys. Chem. C, 122, 27191, 2018; b) Y. Olivier, M. Moral, L. Muccioli, J.-C. Sancho-García, J. Mater. Chem. C, 5, 5718, 2017; c) W. Zeng, S. Gong, C. Zhong, C. Yang, J. Phys. Chem. C, 123, 10081, 2019.
[15] a) W. Li, B. Li, X. Cai, L. Gan, Z. Xu, W. Li, K. Liu, D. Chen, S.-J. Su, Angew. Chem., 131, 11423, 2019; b) C. S. Oh, C.-K. Moon, J. M. Choi, J.-S. Huh, J.-J. Kim, J. Y. Lee, Org. Electron., 42, 337, 2017.
[16] T. Liu, G. Xie, C. Zhong, S. Gong, C. Yang, Adv. Funct. Mater., 28, 1706088, 2018.
[17] F.-M. Xie, H.-Z. Li, G.-L. Dai, Y.-Q. Li, T. Cheng, M. Xie, J.-X. Tang, X. Zhao, ACS Appl. Mater. Interfaces, 11, 26114, 2019.
[18] J.-X. Chen, K. Wang, C.-J. Zheng, M. Zhang, Y.-Z. Shi, S.-T. Tao, H. Lin, W. Liu, W.-W. Tao, X.-M. Ou, X.-H. Zhang, Adv. Sci., 5, 1800436, 2018.
[19] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura, T. Yasuda, Adv. Opt. Mater., 6, 1701147, 2018.
[20] T. Yang, B. Liang, Z. Cheng, C. Li, G. Lu, Y, Wang, J. Phys. Chem. C, 123, 18585, 2019.
[21] T. Chen, C.-H. Lu, C.-W. Huang, X. Zeng, J. Gao, Z. Chen, Y. Xiang, W. Zeng, Z. Huang, S. Gong, C.-C. Wu, C. Yang, J. Mater. Chem. C, 7, 9087, 2019.
[22] T. Yang, Z. Cheng, Z. Li, J. Liang, Y. Xu, C. Li, Y. Wang, Adv. Funct. Mater. DOI: 10.1002/adfm.202002681.
CH.4.
[1] a) L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater., 23, 926, 2011; b) R. Visbal, M. C. Gimeno, Chem. Soc. Rev., 43, 3551, 2014; c) Z.-P. Yang, H.-C. Su, Adv. Funct. Mater., 30, 1906788, 2020.
[2] a) M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151, 1998; b) D. Ma, T. Tsuboi, Y. Qiu, L. Duan, Adv. Mater., 29, 1603253, 2017; c) T. Fleetham, G. Li, J. Li, Adv. Mater., 29, 1601861, 2017; d) H.-T. Mao, G.-F. Li, G.-G. Shan, X.-L. Wang, Z.-M. Su, Coordin. Chem. Rev., 413, 213283, 2020.
[3] a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 492, 234, 2012; b) Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev., 46, 915, 2017; c) Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater., 3, 18020, 2018.
[4] J. H. Kim, J. H. Yun, J. Y. Lee, Adv. Opt. Mater., 6, 1800255, 2018.
[5] a) C. Bizzarri, E. Spuling, D. M. Knoll, D. Volz, S. Brase, Coordin. Chem. Rev., 373, 49, 2018; b) Y. Liu, S.-C. Yiu, C.-L. Ho, W.-Y. Wong, Coordin. Chem. Rev., 375, 514, 2018.
[6] a) B. Murphy, Coordin. Chem. Rev., 243, 237, 2003; b) T.-Y. Li, D. S. M. Ravinson, R. Haiges, P. I. Djurovich, M. E. Thompson, J. Am. Chem. Soc., 142, 6158, 2020.
[7] G. U. Mahoro, J. F. Cestau, J.-L. Renaud, P. B. Coto, R. D. Costa, S. Gaillard, Adv. Opt. Mater., 8, 2000260, 2020.
[8] D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. Rivett, S. Jones, T. H. Thomas, M. A. Jalebi, R. H. Friend, M. Linnolahti, Science, 356, 159, 2017.
[9] R. Hamze, J. L. Peltier, D. Sylvinson, M. Jung, J. Cardenas, R. Haiges, M. Soleilhavoup, R. Jazzar, P. I. Djurovich, G. Bertrand, M. E. Thompson, Science, 363, 601, 2019.
[10] A. S. Romanov, L. Yang, S. T. E. Jones, D. Di, O. J. Morley, B. H. Drummond, A. P. M. Reponen, M. Linnolahti, D. Credgington, M. Bochmann, Chem. Mater., 31, 3613, 2019.
[11] S. Shi, M. C. Jung, C. Coburn, A. Tadle, D. Sylvinson P. I. Djurovich, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 141, 3576, 2019.
[12] F. Chotard, V. Sivchik, M. Linnolahti, M. Bochmann, A. S. Romanov, Chem. Mater., 32, 6114, 2020.
[13] P. J. Conaghan, C. S. B. Matthews, F. Chortard, S. T. E. Jones, N. C. Greenham, M. Bochmann, D. Credgington, A. S. Romanov, Nat. Commun., 11, 1758, 2020.
[14] M. Gernert, L. Balles-Wolf, F. Kerner, U. Muller, A. Schmiedel, M. Holzapfel, C. M. Marian, J. Pflaum, C. Lambert, A. Steffen, J. Am. Chem. Soc., 142,8897, 2020.
[15] J. Li, L. Wang, Z. Zhao, X. Li, X. Yu, P. Huo, Q. Jin, Z. Liu, Z. Bian, C. Huang, Angew. Chem. Int. Ed., 21, 8210, 2020.
[16] A. S. Romanov, S. T. Jones, Q. Gu, P. J. Conaghan, B. H. Drummond, J. Feng, F. Chotard, L. Buizza, M. Foley, M. Linnolahti, Chem. Sci., 11, 435, 2020.
[17] S. Keller, F. Brunner, J. M. Junquera-Hernandez, A. Pertegas, M.-G. La-Placa, A. Prescimone, E. C. Constable, H. J. Bolink, E. Orti, C. E. Housecroft, ChemPlusChem, 83, 217, 2018.
[18] S. Keller, A. Prescimone, H. Bolink, M. Sessolo, G. Longo, L. Martinez-Sarti, J. M. Junquera-Hernandez, E. C. Constable, E. Orti, C. E. Housecroft, Dalton Trans., 47, 14263, 2018.
[19] Y.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nat. Photon., 14, 570, 2020.
[20] G. K.-M. So, G. Cheng, J. Wang, X. Chang, C.-C. Kwok, H. Zhang, C.-M. Che, Chem. Asian J., 12, 1490, 2017.
[21] H. Shin, Y. H. Ha, H.-G. Kim, R. Kim, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Adv. Mater., 31, 1808102, 2019.
[22] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 30, 1704961, 2018.
[23] T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater., 28, 6976, 2016.
[24] D. Yokoyama, J. Mater. Chem., 21, 19187, 2011.
[25] H. Sun, C. Zhong, J.-L. Bredas, J. Chem. Theory Comput., 11, 3851, 2015.
[26] D. S. M. Ravinson, M. E. Thompson, Mater. Horiz., 7, 1210, 2020.
[27] R. Hamze, S. Shi, S. C. Kapper, D. S. M. Ravinson, L. Estergreen, M.-C. Jung, A. C. Tadle, R. Haiges, P. I. Djurovich, J. L. Peltier, R. Jazzar, G. Bertrand, S. E. Bradforth, M. E. Thompson, J. Am. Chem. Soc., 141, 8616, 2019.
[28] H. Yersin, R. Czerwieniec, M. Z. Shafikov, A. F. Suleymanova, ChemPhysChem, 18, 3508, 2017.
[29] E. Fresta, M. D. Weber, J. Fernandez-Cestau, R. D. Costa, Adv. Opt. Mater., 7, 1900830, 2019.
[30] Z. Wang, C. Zheng, W. Wang, C. Xu, B. Ji, X. Zhang, Inorg. Chem., 55, 2157, 2016.
[31] M. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, J. Am. Chem. Soc., 136, 16032, 2014.
[32] a) Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photon. 2020, https://doi.org/10.1038/s41566-020-0667-0; b) L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photon. 2020, https://doi.org/10.1038/s41566-020-0668-z.
[33] W. Zeng, S. Gong, C. Zhong, C. Yang, J. Phys. Chem. C, 123, 10081, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71472-
dc.description.abstract近年來,有機發光二極體(Organic Light-Emitting Diode, OLED)顯示技術已成為主要的顯示技術之一,許多配裝OLED之產品也已在業界裡商品化,因此發展高效率OLED的功能材料已成為近期學術研究上探討的重點。在本篇論文中,我們開發了新穎高折射率透明導電陽極與分析其在元件上的光學效應、研究非對稱線性橘紅光熱激活化延遲螢光(Thermally Activated Delay Fluorescence, TADF)材料、以及研究新穎雙價單配位銅錯合物TADF材料。
在本論文第一部分,我們研究使用高折射率透明電極來提升OLED光萃取效率。同時整合折射率高達2.4的透明導體摻鈮二氧化鈦(Titanium Doped Niobium Oxide, TNO)、現今最低折射率的載子傳輸材料與高水平發光偶極矩之發光材料,我們利用簡單的傳統平面OLED結構,實現外部量子效率(External Quantum Efficiency, EQE)超過40% (41.5%)的元件。
在第二部分,我們研究了非對稱橘紅光TADF材料TRZ-SBA-NAI。將TRZ-SBA-NAI摻雜在主體材料當中時呈現橘紅光的放光,並且具有高達87%的光激發光量子效率(Photoluminescence Quantum Yield, PLQY)。同時,TRZ-SBA-NAI分子的線性結構使其具有高水平發光偶極矩比例達88%。最後,TRZ-SBA-NAI的發光元件頻譜峰值為593奈米,EQE高達31.7%,為目前橘紅光TADF元件的最高效率之一。
在本論文的第三部分,我們研究了單價雙配位銅錯合物TADF發光材料MAC*-Cu-DPAC。由於其雙配位的線性結構,使其具有77%的水平發光偶極矩比例,並具有70%的光激發光量子效率。將其整合進元件內,可得到21.1%的高外部量子效率,同時在高亮度1000 nits時依然保有20.1%的高效率,元件頻譜峰值為630奈米,為現在銅錯合物橘紅光與紅光元件表現的最高效率之一。
zh_TW
dc.description.abstractRecently, organic light-emitting diode (OLED) has been considered as one of the major display technologies. Many electronic products using OLED panels have been commercialized. Therefore, developing high-efficiency OLED functional materials has become an important research topic in academia. In this dissertation, we develop a novel high-index transparent anode materials for OLEDs and study its optical effects on the device efficiency, study an unsymmetrical linear-shape thermally activated delayed fluorescence (TADF) material, and investigate a novel two-coordinate Cu(I) TADF complex.
In the first part of this dissertation, we report the adoption of a high-refractive-index transparent electrode as a new avenue for greatly boosting OLED light extraction efficiency. By using the Nb-doped TiO2 (TNO) transparent electrodes with a high refractive index of up to 2.4, along with state-of-the-art low-index organic carrier transporters and highly horizontal dipole emitters, a very high external quantum efficiency of exceeding 40% (41.5%) is realized for simple, conventional planar OLEDs.
In the second part, an unsymmetrical TADF emitter of TRZ-SBA-NAI was studied. As doped into the host matrix, TRZ-SBA-NAI exhibited an orange-red emission, together with a high photoluminescence quantum yield of 87%. The linear molecular shape imparted TRZ-SBA-NAI with one of the highest horizontal dipole ratio of 88% for oriented orange-red emitters. Consequently, devices using TRZ-SBA-NAI resulted in high external quantum efficiency of 31.7% with an electroluminescent peak at 593 nm.
In the third part of this dissertation, a red Cu(I) complex, MAC*-Cu-DPAC, was studied. Thanks to the linear geometry and the rigid acceptor and donor ligands in a coplanar conformation, the complex not only exhibited a high photoluminescence quantum yield of up to 70% with a sub-microsecond lifetime but also achieved preferentially horizontal dipole orientation. The resulting OLEDs delivered high external quantum efficiencies of 21.1% at maximum and 20.1% at 1000 nits, with a red emission peak at ≈ 630 nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:21Z (GMT). No. of bitstreams: 1
U0001-2311202022011800.pdf: 6819696 bytes, checksum: ce2e78c342049f489ba2c2c6b44d3524 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Content viii
List of Tables xi
List of Figures xiii
Chapter 1 Introduction 1
1.1 Overview of Organic Light-Emitting Diodes 1
1.2 Optics of Organic Light-Emitting Devices 3
1.3 Review of Thermally Activated Delayed Fluorescence Materials 5
1.4 Dissertation Motivation and Organization 8
References 9
Figures 11
Chapter 2 High-Efficiency Organic Light-Emitting Diodes Using High-Index Transparent Electrode 14
2.1 Introduction 14
2.2 Method 17
2.2.1 Optical simulation for OLEDs and angle-/polarization-resolved PL 17
2.2.2 Materials 18
2.2.3 Photophysical, optical, and physical characterization 18
2.2.4 Deposition and characterization of TNO films 20
2.2.5 OLED fabrication and characterization 21
2.3 Results and Discussion 23
2.3.1 Optical Simulation 23
2.3.2 High-index transparent electrodes 25
2.3.4 OLED Device, Results, and Discussion 26
2.4 Conclusion 37
References 38
Tables 42
Figures 46
Chapter 3 Efficient Orange-Red OLED with Unsymmetrical Thermally Activated Delayed Fluorescence Emitter 63
3.1 Introduction 63
3.2 Method 66
3.2.1 Materials 66
3.2.2 Photophysical Characterization 67
3.2.3 Determination of the emitting dipole orientation in an emitting layer 68
3.2.4 Device Fabrication and Characterization 69
3.3 Results and Discussions 71
3.3.1 Photophysical properties of materials in soild state 71
3.3.2 OLED Device performance 73
3.4 Conclusion 75
References 76
Tables 80
Figures 82
Chapter 4 Exceeding 20% External Quantum Efficiency for Red OLED Based on A Carbene-Cu(I)-Acridine Complex 91
4.1 Introduction 91
4.2 Method 95
4.2.1 Materials 95
4.2.2 Photophysical Characterization 96
4.2.3 Quantitative analyses of exciton dynamics and the corresponding rate constants 98
4.2.4 Determination of the emitting dipole orientation in an emitting layer 103
4.2.5 Device Fabrication and Characterization 104
4.3 Results and Discussions 106
4.3.1 Photophysical properties of materials 106
4.3.2 OLED Device performance 109
4.4 Conclusion 112
References 113
Tables 118
Figures 120
Chapter 5 Summary 129
5.1 Dissertation Summary 129
dc.language.isoen
dc.subject有機發光二極體zh_TW
dc.subject光萃取技術zh_TW
dc.subject高折射率透明導體zh_TW
dc.subject熱激活化延遲螢光zh_TW
dc.subject雙配位單價銅錯合物zh_TW
dc.subjectTwo coordinate Cu(I) complexen
dc.subjectOut-coupling efficiencyen
dc.subjectHigh-index transparent conductoren
dc.subjectThermally Activated Delay Fluorescenceen
dc.subjectOrganic light-emitting diodeen
dc.title高效率有機發光二極體功能材料之開發zh_TW
dc.titleDevelopment of functional materials for high-efficiency organic light-emitting diodesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳俐吟(Li-Yin Chen),蔡志宏(Chih-Hung Tsai),林昶宇(Chang-Yu Lin),黃奕翔(Yi-Hsiang Huang)
dc.subject.keyword有機發光二極體,光萃取技術,高折射率透明導體,熱激活化延遲螢光,雙配位單價銅錯合物,zh_TW
dc.subject.keywordOrganic light-emitting diode,Out-coupling efficiency,High-index transparent conductor,Thermally Activated Delay Fluorescence,Two coordinate Cu(I) complex,en
dc.relation.page130
dc.identifier.doi10.6342/NTU202004349
dc.rights.note有償授權
dc.date.accepted2020-11-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2311202022011800.pdf
  未授權公開取用
6.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved