請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Wen-Jui Chang | en |
| dc.contributor.author | 張文睿 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:01:08Z | - |
| dc.date.available | 2029-12-31 | |
| dc.date.copyright | 2019-02-14 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-11 | |
| dc.identifier.citation | [1] C. Sheraw et al., 'Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,' Applied physics letters, vol. 80, no. 6, pp. 1088-1090, 2002.
[2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, 'Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,' Nature, vol. 359, p. 710, 10/22/online 1992. [3] M. Schadt and W. Helfrich, 'Voltage‐dependent optical activity of a twisted nematic liquid crystal,' Applied Physics Letters, vol. 18, no. 4, pp. 127-128, 1971. [4] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, 'Polymer-stabilized liquid crystal blue phases,' Nature materials, vol. 1, no. 1, p. 64, 2002. [5] Y.-H. Tai, L. Chuang, and C.-H. Chen, 'Liquid crystal display having stripe-shaped common electrodes formed above plate-shaped pixel electrodes,' ed: Google Patents, 2001. [6] P. J. Collings and M. Hird, Introduction to liquid crystals: chemistry and physics. CRC Press, 2017. [7] S. Hou, W. Choi, and G. J. Su, 'Ultra-Bright Heads-Up Displays Using a Method of Projected Color Images by Combination of LEDs and Polymer-Dispersed Liquid Crystals,' Journal of Display Technology, vol. 10, no. 3, pp. 228-234, 2014. [8] H. Goldmann, 'Spaltlampenphotographie und–photometric,' Ophthalmologica, vol. 98, no. 5-6, pp. 257-270, 1939. [9] M. Minsky, 'Memoir on inventing the confocal scanning microscope,' Scanning, vol. 10, no. 4, pp. 128-138, 1988. [10] M. Marvin, 'Microscopy apparatus,' ed: Google Patents, 1961. [11] R. Gräf, J. Rietdorf, and T. Zimmermann, 'Live cell spinning disk microscopy,' in Microscopy techniques: Springer, 2005, pp. 57-75. [12] J. Pawley, Handbook of biological confocal microscopy. Springer Science & Business Media, 2010. [13] T. Shimozawa et al., 'Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging,' Proceedings of the National Academy of Sciences, vol. 110, no. 9, pp. 3399-3404, 2013. [14] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, 'High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,' Applied Optics, vol. 41, no. 22, pp. 4704-4708, 2002. [15] C. Sheppard, D. Shotton, and C. Sheppard, Confocal Laser Scanning Microscopy. Microscopy Handbook. New York: BIOS Scientific Publishers Ltd, 1997. [16] D. K. Toomre, M. F. Langhorst, and M. W. Davidson. Education in Microscopy and Digital Imaging. Available: http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html [17] M. Petráň, M. Hadravský, M. D. Egger, and R. Galambos, 'Tandem-scanning reflected-light microscope,' JOSA, vol. 58, no. 5, pp. 661-664, 1968. [18] M. D. Egger and M. Petran, 'New reflected-light microscope for viewing unstained brain and ganglion cells,' Science, vol. 157, no. 3786, pp. 305-307, 1967. [19] P. Davidovits and M. D. Egger, 'Scanning Laser Microscope,' Nature, vol. 223, p. 831, 08/23/online 1969. [20] W. C. Warger Ii and C. A. DiMarzio, 'Dual-wedge scanning confocal reflectance microscope,' Optics Letters, vol. 32, no. 15, pp. 2140-2142, 2007/08/01 2007. [21] R. J. Sherman, 'Polygonal scanners: applications, performance, and design,' in Laser Beam Scanning: Routledge, 2017, pp. 63-123. [22] H. Seo, Y. Hwang, K. Choe, and P. Kim, 'In vivo quantitation of injected circulating tumor cells from great saphenous vein based on video-rate confocal microscopy,' Biomedical optics express, vol. 6, no. 6, pp. 2158-2167, 2015. [23] G. Lazarev, A. Hermerschmidt, S. Krüger, S. Osten, and M. A. Technologies, 'LCOS spatial light modulators: trends and applications,' Optical Imaging, pp. 1-29, 2012. [24] D. Dan et al., 'DMD-based LED-illumination Super-resolution and optical sectioning microscopy,' Scientific reports, vol. 3, p. 1116, 2013. [25] 汪芳興. (2009). 反射式矽液晶顯示技術LCoS簡介. Available: http://web.nchu.edu.tw/pweb/users/fansen_wang/lesson/6941.pdf [26] P. Křížek, I. Raška, and G. M. Hagen, 'Flexible structured illumination microscope with a programmable illumination array,' Optics express, vol. 20, no. 22, pp. 24585-24599, 2012. [27] B. Lee. (2018). Introduction to ±12 Degree Orthogonal Digital Micromirror Devices (DMDs). Available: http://www.ti.com/lit/an/dlpa008b/dlpa008b.pdf [28] R. H. Webb, 'Confocal optical microscopy,' Reports on Progress in Physics, vol. 59, no. 3, p. 427, 1996. [29] D. Rolf T. Borlinghaus. (2011). Pinhole Controls Optical Slicing. Available: https://www.leica-microsystems.com/science-lab/pinhole-controls-optical-slicing/ [30] X. Q. Mao, 'Confocal Microscopes with Slit Apertures AU - Sheppard, C.J.R,' Journal of Modern Optics, vol. 35, no. 7, pp. 1169-1185, 1988/07/01 1988. [31] microposit s1800 series photo resists. Available: https://amolf.nl/wp-content/uploads/2016/09/datasheets_S1800.pdf [32] Norland Optical Adhesive 65. Available: https://www.norlandprod.com/adhesives/noa%2065.html [33] J. Cooper. Compositional Analysis of Merck E7 Liquid Crystal Intermediates Using UltraPerformance Convergence Chromatography (UPC2) with PDA Detection. Available: http://www.waters.com/webassets/cms/library/docs/720004814en.pdf [34] R. Bagnell. (2006). CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL. Available: https://www.med.unc.edu/microscopy/files/2018/06/clsm-tutorial-v2.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71460 | - |
| dc.description.abstract | 共軛焦顯微鏡是能提升顯微鏡影像解析度與對比度的重要關鍵,特別是應用在螢光顯微鏡上。可程式續陣列顯微鏡是一種利用可程式續的空間光調製器的共軛焦顯微鏡。先前利用數位微鏡裝置或單晶矽反射式液晶在共軛焦顯微鏡上已被廣泛的演示。單晶矽反射式液晶雖然沒有機械部件,但需要極化光雷射會讓光的使用率下降。在本篇論文中,我們提出利用高分子散射液晶當作空間光調製器的可程式續陣列顯微鏡。相較於數位微鏡裝置或單晶矽反射式液晶的共軛焦顯微鏡,高分子散射液晶空間光調製器容易製造、花費較少,且系統容易架設。此外,在本篇系統中,高分子散射液晶空間光調製器垂直於光軸,是在其他系統中無法做到或需要更多的元件。因此在本篇系統終能讓各元件更緊密排列,並相較於其他以液晶為主的系統能增加動態範圍。 | zh_TW |
| dc.description.abstract | The confocal microscopy is the based concept to improve the resolution of the microscopy image, and widely utilized in fluorescence microscopy. Programmable Array Microscopy (PAM) is one of confocal microscopy utilizing programmable spatial light modulator (SLM). Previously, utilizing Digital Micromirror Device (DMD) or Liquid Crystal On Silicon (LCOS) as SLM for confocal microscopy has been widely demonstrated. LCOS has no mechanical part in the component, but polarizing laser is needed causing poor light utilizing rate. In this thesis, we present a PAM which uses the polymer-dispersed liquid crystal (PDLC) chip as the SLM. PDLC SLM is easier to fabricate, cost more affordable, and easier to setup the system than other LCOS or DMD based PAMs. Furthermore, in our system, the incident light is perpendicular to the PDLC chip, while others can’t or need more components. Therefore, our system will make the whole system more compact. Also, it can increase the dynamic range compare to other liquid crystal based PAMs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:01:08Z (GMT). No. of bitstreams: 1 ntu-108-R05941101-1.pdf: 3789884 bytes, checksum: 2620b44e24dcd98dff8da756a2a09efe (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLE x Chapter 1 Introduction to Liquid Crystal 1 1.1 Liquid Crystal 1 1.1.1 Types of Liquid Crystal 2 1.1.2 Properties of Liquid Crystal 3 1.2 Polymer Dispersed Liquid Crystal (PDLC) 6 1.2.1 Operating Theorem 6 1.2.2 Method of PDLC Fabrication 7 Chapter 2 Introduction to Confocal Microscopy 8 2.1 Spinning-Disk Confocal Microscope 9 2.2 Laser Scanning Confocal Microscope 12 2.3 Programmable Array Microscope (PAM) 14 2.3.1 PAM with Liquid Crystal On Silicon (LCOS) 14 2.3.2 PAM with Digital Micro-Mirror Device (DMD) 16 2.3.3 PAM with Polymer Dispersed Liquid Crystal (PDLC) 18 2.4 Theoretical Resolution 18 2.4.1 Pinhole Size 18 2.4.2 Resolution 19 Chapter 3 Fabrication of PDLC SLM 24 3.1 Materials 25 3.1.1 S1813 25 3.1.2 NOA65 26 3.1.3 Liquid Crystal 27 3.2 Patterned ITO Glass 28 3.2.1 ITO Glass Preparation 29 3.2.2 Fabrication of Patterned ITO 30 3.3 PDLC Parameter Analyzed Results 31 3.3.1 Analyzation of Exposure Time 32 3.3.2 Analyzation of Thickness 35 3.3.3 Analyzation of Concentration 36 3.4 Assembly PDLC SLM 37 Chapter 4 PAM System with PDLC SLM 38 4.1 System Design 38 4.2 PDLC SLM Setup 39 4.3 Experimental Setup 41 Chapter 5 Experiment Results 42 5.1 Measurement of Longitudinal Resolution 43 5.2 20X Objective 44 5.2.1 Pinhole Thickness 9 µm 45 5.2.2 Pinhole Thickness 16 µm 46 5.2.3 Pinhole Thickness 25 µm 47 5.3 40X Objective 48 5.3.1 Pinhole Thickness 9 µm 49 5.3.2 Pinhole Thickness 16 µm 50 5.3.3 Pinhole Thickness 25 µm 51 5.4 Confocal Sectioning Verified 52 5.4.1 Stepped Sample 52 5.4.2 Confocal Image 56 Chapter 6 Conclusions 59 REFERENCE 61 | |
| dc.language.iso | en | |
| dc.subject | 可編程陣列顯微鏡 | zh_TW |
| dc.subject | 高分子聚合物散射液晶 | zh_TW |
| dc.subject | 共軛焦顯微鏡 | zh_TW |
| dc.subject | programmable array microscopy (PAM) | en |
| dc.subject | confocal microscopy | en |
| dc.subject | prolymer dispersed liquid crystal (PDLC) | en |
| dc.title | 可編程高分子散射液晶陣列應用於共軛焦顯微鏡 | zh_TW |
| dc.title | A confocal microscopy with programmable polymer dispersed liquid crystal arrays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫?光(Chi-Kuang Sun),王倫(Lon Wang) | |
| dc.subject.keyword | 共軛焦顯微鏡,可編程陣列顯微鏡,高分子聚合物散射液晶, | zh_TW |
| dc.subject.keyword | confocal microscopy,programmable array microscopy (PAM),prolymer dispersed liquid crystal (PDLC), | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU201900367 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
