Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群(Muh-Chyun Tang)
dc.contributor.authorI-Han Liaoen
dc.contributor.author廖伊涵zh_TW
dc.date.accessioned2021-06-17T06:01:04Z-
dc.date.available2019-02-14
dc.date.copyright2019-02-14
dc.date.issued2019
dc.date.submitted2019-02-11
dc.identifier.citationBabbie, E.(2013)。研究方法:基礎理論與技巧二版(The Basics of Social Research. 5th ed.)(蔡毓智譯)。臺北市:雙葉。(原作2011年出版)
張媺媺(2015)。電影偏好結構多樣性及開放性之量表建立與驗證(未出版之碩士論文)。國立臺灣大學,臺北市。
劉枚蓮、劉同存與吳偉平(2012)。基於網絡消費者偏好預測的推薦算法研究。圖書館情報工作,56(4),120-125。
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
Agichtein, E., Brill, E., & Dumais, S. (2006, August). Improving web search ranking by incorporating user behavior information. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 19-26). ACM.
Albadvi, A., & Shahbazi, M. (2009). A hybrid recommendation technique based on product category attributes. Expert Systems with Applications, 36(9), 11480-11488.
Amatriain, X., & Basilico, J. (2015). Recommender systems in industry: A netflix case study. In Recommender Systems Handbook (pp. 385-419). Springer US.
Bettman, J. R., Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice processes. Journal of consumer research, 25(3), 187-217.
Carpenter, G. S., & Nakamoto, K. (1989). Consumer preference formation and pioneering advantage. Journal of Marketing Research, 26(3), 285-298.
Castells, P., Hurley, N. J., & Vargas, S. (2015). Novelty and diversity in recommender systems. In Recommender Systems Handbook (pp. 881-918). Springer US.
Castells, P., Vargas, S., & Wang, J. (2011). Novelty and diversity metrics for recommender systems: choice, discovery and relevance. International Workshop on Diversity in Document Retrieval at the ECIR 2011: the 33rd European Conference on Information Retrieval. Dublin.
Caves, R. E. (2000). Creative industries: Contracts between art and commerce. Harvard University Press.
Celsi, R. L., & Olson, J. C. (1988). The role of involvement in attention and comprehension processes. Journal of consumer research, 15(2), 210-224.
Channamsetty, S., & Ekstrand, M. D. (2017). Recommender Response to Diversity and Popularity Bias in User Profiles. Short paper in Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference.
Di Noia, T., Ostuni, V. C., Rosati, J., Tomeo, P., & Di Sciascio, E. (2014, October). An analysis of users' propensity toward diversity in recommendations. In Proceedings of the 8th ACM Conference on Recommender systems (pp. 285-288). ACM.
Druckman, J. N., & Lupia, A. (2000). Preference formation. Annual Review of Political Science, 3(1), 1-24.
Fleder, D., & Hosanagar, K. (2009). Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Management science, 55(5), 697-712.
Flynn, L. J. (2006, January). Like This? You’ll Hate That. (Not All Web Recommendations Are Welcome). New York Times. Retrieved from http://www.nytimes.com/2006/01/23/technology/23recommend.html?pagewanted=1&_r=0&emc=eta1
Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: when do customers really prefer products tailored to their preferences? Journal of Marketing, 73(5), 103-121.
Gordon, M. E., McKeage, K., & Fox, M. A. (1998). Relationship marketing effectiveness: the role of involvement. Psychology and Marketing, 15(5), 443-459.
Greenwald, A. G., & Leavitt, C. (1984). Audience involvement in advertising: Four levels. Journal of consumer research, 11(1), 581-592.
Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. In Recommender Systems Handbook (pp. 265-308). Springer US.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.
Hoeffler, S., & Ariely, D. (1999). Constructing stable preferences: A look into dimensions of experience and their impact on preference stability. Journal of Consumer Psychology, 8(2), 113-139.
Hoeffler, S., Ariely, D., & West, P. (2006). Path dependent preferences: The role of early experience and biased search in preference development. Organizational Behavior and Human Decision Processes, 101(2), 215-229.
Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of consumer research, 9(1), 90-98.
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction. Cambridge University Press.
Kramer, T. (2007). The effect of measurement task transparency on preference construction and evaluations of personalized recommendations. Journal of Marketing Research, 44(2), 224-233.
Krugman, H. E. (1965). The impact of television advertising: Learning without involvement. Public opinion quarterly, 29(3), 349-356.
Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263-275.
Lu, Z., Pan, S. J., Li, Y., Jiang, J., & Yang, Q. (2016, July). Collaborative Evolution for User Profiling in Recommender Systems. In IJCAI (pp. 3804-3810).
McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. Paper presented at the CHI'06 extended abstracts on Human factors in computing systems.
Neelamegham, R., & Jain, D. (1999). Consumer choice process for experience goods: An econometric model and analysis. Journal of marketing research, 36(3), 373-386.
Park, D.-H., Lee, J., & Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International Journal of Electronic Commerce, 11(4), 125-148.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: A constructive processing perspective. Annual review of psychology, 43(1), 87-131.
Payne, J. W., Bettman, J. R., & Schkade, D. A. (1999). Measuring Constructed Preferences: Towards a Building Code. Journal of Risk and Uncertainty, 19(1), 243-270.
Preference [Def. 1]. (n.d.). Oxford Advanced Learner's Dictionary. In Oxford Advanced Learner's Dictionary. Retrieved January 15, 2016, from http://www.oxforddictionaries.com/definition/learner/preference
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 127-134). New York: ACM.
Reinstein, D. A., & Snyder, C. M. (2005). The influence of expert reviews on consumer demand for experience goods: A case study of movie critics. The journal of industrial economics, 53(1), 27-51.
Ricci, F., Rokach, L., & Shapira, B. (2015). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). springer US.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Paper presented at the Proceedings of the 10th international conference on World Wide Web.
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324). Springer Berlin Heidelberg.
Schafer, J. B., Konstan, J., & Riedl, J. (1999, November). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce (pp. 158-166). ACM.
Shen, A., & Ball, A. D. (2011). Preference stability belief as a determinant of response to personalized recommendations. Journal of Consumer Behaviour, 10(2), 71-79.
Simonson, I. (2005). Determinants of customers’ responses to customized offers: Conceptual framework and research propositions. Journal of Marketing, 69(1), 32-45.
Smyth, B., & McClave, P. (2001, July). Similarity vs. diversity. In International Conference on Case-Based Reasoning (pp. 347-361). Springer Berlin Heidelberg.
Tang, M.-C., Sie, Y.-J., & Ting, P.-H. (2014). Evaluating books finding tools on social media: A case study of aNobii. Information Processing & Management, 50(1), 54-68.
Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems. Paper presented at the Proceedings of the fifth ACM conference on Recommender systems.
Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: Use, characteristics, and impact. Mis Quarterly, 31(1), 137-209.
Zaichkowsky, J. L. (1985). Measuring the involvement construct. Journal of consumer research, 12(3)341-352.
Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of recommendation lists. Paper presented at the Proceedings of the 2008 ACM conference on Recommender systems.
Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012). Auralist: introducing serendipity into music recommendation. Paper presented at the Proceedings of the fifth ACM international conference on Web search and data mining.
Zhou, T., Kuscsik, Z., Liu, J. G., Medo, M., Wakeling, J. R., & Zhang, Y. C. (2010). Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences, 107(10), 4511-4515.
Ziegler, C.-N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving recommendation lists through topic diversification. Paper presented at the Proceedings of the 14th international conference on World Wide Web.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71456-
dc.description.abstract傳統上認為準確度是影響推薦系統使用者滿意與否的主要因素,然而準確度指標的單調性、過於顯而易見等問題,促使研究者發展非準確度指標以改善使用者滿意度,卻發現使用者對於具有多樣性、新穎性的推薦結果偏好程度不一致的情況。同時,較少研究將使用者本身的特性納入評估過程。本研究試圖了解此種偏好不一致的情況,是否與個人特質-偏好多樣性與偏好開放性有關。
  本研究以電影為推薦項目,透過張媺媺(2015)建構之偏好屬性量表測量偏好多樣性與偏好開放性,並以實驗性的電影資料平台蒐集觀影經驗並建構使用者興趣檔。再以使用者興趣檔與未知電影評價,探索受試者的觀影行為是否可以反映出個人的偏好屬性,以有效樣本293人進行相關分析,並驗證偏好屬性量表的效度。
  研究結果驗證使用者的偏好多樣性與偏好開放性可以透過其行為上的表現-觀影經驗中的使用者興趣檔與未知電影評價中推斷。針對偏好多樣性,本研究以電影清單內平均相似度、電影類別、電影類別分布平均程度等方式測量電影多樣性。對於偏好開放性,本研究以感興趣的電影數量、感興趣的未知電影新穎程度、未知電影接受程度、已知電影與未知電影的平均相似度等方式測量電影新穎性。結果顯示出偏好多樣性程度越高者,其觀影經驗的多樣性越高;偏好開放性程度越高者,對已知或未知電影的接受程度越高、感興趣的未知電影新穎性越高。
zh_TW
dc.description.abstractIt has been pointed out that the accuracy-based measures do not fully reflect the values the users derived from the recommender system, most noticeable of which are “non-obviousness” and diversity of the recommendations. To effectively improve user’s satisfaction, the key to a proper balance between accuracy, diversity, and novelty might lie in how willing the users are to explore diverse or novel items. Therefore, recommendation strategies should be applied adaptively according to the individual’s preference characteristics, namely, “preference diversity” and “openness to novelty”.
  Built upon previous research on the psychological scale of “preference diversity” and “openness to novelty”, a user study was conducted to test how users’ “preference diversity” and “openness to novelty” scores correlated with their past movie profile and judgment of previously unseen and unknown movies. A total of 293 participants were recruited to take part in the study, in which they were to judge a total of 220 movies so their judgment of movie seen, known but unseen, and movies previously unknown could be elicited; this is then followed by their filling out of the “preference diversity” and “openness to novelty” scales.
  Results showed that users’ “preference diversity” score was significantly correlated with the diversity of movies seen, as measured by average similarity, and movie genre entropy, which validated the diversity scale. As for “openness to novelty,” it was found that users with higher “openness to novelty” scores were also most likely to show interests in a higher percentage of known but not yet seen movies, unknown movies, and all movies. The correlation between the “openness to novelty” scores with the “novelty” of movies was also tested. The novelty of movies was measure both generically, by their popularity, and individually, by gauging the similarity between each individual’s judgment of seen and unknown movies. Both popularity-based and similarity-based novelty were found to be significantly correlated with “openness to novelty”, which indicated that individuals with high openness to novelty, in general, appreciated more obscure movies and movies dissimilar to those they have seen before.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:01:04Z (GMT). No. of bitstreams: 1
ntu-108-R02126007-1.pdf: 2429300 bytes, checksum: b8b609e973e67b3e063a83b38983435d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘 要 iii
Abstract iv
目 次 vi
圖 次 viii
表 次 viii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 5
第三節 名詞解釋 6
第貳章 文獻探討 8
第一節 推薦系統與效益評估 8
第二節 準確度指標 14
第三節 非準確度指標 20
第四節 偏好與偏好屬性 26
第五節 小結 39
第參章 研究設計與實施 41
第一節 研究方法 42
第二節 研究對象 52
第三節 資料蒐集與分析 53
第肆章 研究結果與討論 69
第一節 受試者基本資料與電影觀賞與選擇行為 69
第二節 電影偏好屬性量表分析 75
第三節 觀影經驗問卷分析 79
第四節 研究假設驗證 86
第五節 綜合討論 108
第伍章 結論與建議 119
第一節 結論 119
第二節 研究限制與未來研究建議 121
參考文獻 123
附錄一、電影樣本清單 131
附錄二、基本資料與偏好屬性量表 150
附錄三、研究參與報名表 152
附錄四、研究同意書 153
附錄五、電影資料平台使用前說明 156
dc.language.isozh-TW
dc.subject偏好多樣性zh_TW
dc.subject偏好開放性zh_TW
dc.subject電影推薦系統zh_TW
dc.subject偏好屬性zh_TW
dc.subject心理計量zh_TW
dc.subjectpreference characteristicsen
dc.subjectopenness to noveltyen
dc.subjectpreference diversityen
dc.subjectmovie recommender systemen
dc.subjectpsychometricsen
dc.title以使用者電影興趣檔與未知電影評價驗證偏好多樣性與偏好開放性zh_TW
dc.titleOn the validation of the constructs of 'preference diversity' and 'openness to novelty' using user movie profile and judgmenten
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌堅(Sung-Chien Lin),吳怡瑾(I-Chin Wu)
dc.subject.keyword偏好多樣性,偏好開放性,電影推薦系統,偏好屬性,心理計量,zh_TW
dc.subject.keywordpreference diversity,openness to novelty,movie recommender system,preference characteristics,psychometrics,en
dc.relation.page156
dc.identifier.doi10.6342/NTU201804408
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved