Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71451
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志
dc.contributor.authorChing Loen
dc.contributor.author羅靖zh_TW
dc.date.accessioned2021-06-17T06:00:58Z-
dc.date.available2022-02-19
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-11
dc.identifier.citation1. Iero, M.; Valenti, R.; Huber, V.; Filipazzi, P.; Parmiani, G.; Fais, S.; Rivoltini, L., Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 2008, 15 (1), 80-88.
2. Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; Garcia-Santos, G.; Ghajar, C.; Nitadori-Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B. A.; Callahan, M. K.; Yuan, J.; Martins, V. R.; Skog, J.; Kaplan, R. N.; Brady, M. S.; Wolchok, J. D.; Chapman, P. B.; Kang, Y.; Bromberg, J.; Lyden, D., Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18 (6), 883-91.
3. Roma-Rodrigues, C.; Fernandes, A. R.; Baptista, P. V., Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells. Biomed Res Int 2014.
4. Ye, J.; Wu, D.; Wu, P.; Chen, Z. G.; Huang, J., The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol 2014, 35 (5), 3945-3951.
5. Costa-Silva, B.; Aiello, N. M.; Ocean, A. J.; Singh, S.; Zhang, H.; Thakur, B. K.; Becker, A.; Hoshino, A.; Mark, M. T.; Molina, H.; Xiang, J.; Zhang, T.; Theilen, T. M.; Garcia-Santos, G.; Williams, C.; Ararso, Y.; Huang, Y.; Rodrigues, G.; Shen, T. L.; Labori, K. J.; Lothe, I. M.; Kure, E. H.; Hernandez, J.; Doussot, A.; Ebbesen, S. H.; Grandgenett, P. M.; Hollingsworth, M. A.; Jain, M.; Mallya, K.; Batra, S. K.; Jarnagin, W. R.; Schwartz, R. E.; Matei, I.; Peinado, H.; Stanger, B. Z.; Bromberg, J.; Lyden, D., Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015, 17 (6), 816-26.
6. Hoshino, A.; Costa-Silva, B.; Shen, T. L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A. E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J. M.; Dumont-Cole, V. D.; Kramer, K.; Wexler, L. H.; Narendran, A.; Schwartz, G. K.; Healey, J. H.; Sandstrom, P.; Labori, K. J.; Kure, E. H.; Grandgenett, P. M.; Hollingsworth, M. A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S. K.; Jarnagin, W. R.; Brady, M. S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A. J.; Bissell, M. J.; Garcia, B. A.; Kang, Y.; Rajasekhar, V. K.; Ghajar, C. M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D., Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527 (7578), 329-35.
7. Kosaka, N.; Iguchi, H.; Hagiwara, K.; Yoshioka, Y.; Takeshita, F.; Ochiya, T., Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013, 288 (15), 10849-59.
8. Chen, W. X.; Liu, X. M.; Lv, M. M.; Chen, L.; Zhao, J. H.; Zhong, S. L.; Ji, M. H.; Hu, Q.; Luo, Z.; Wu, J. Z.; Tang, J. H., Exosomes from Drug-Resistant Breast Cancer Cells Transmit Chemoresistance by a Horizontal Transfer of MicroRNAs. Plos One 2014, 9 (4).
9. Hu, Y. B.; Yan, C.; Mu, L.; Huang, K. Y.; Li, X. L.; Tao, D. D.; Wu, Y. Q.; Qin, J. C., Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer. Plos One 2015, 10 (5).
10. Paget, S., The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989, 8 (2), 98-101.
11. Pisitkun, T.; Shen, R. F.; Knepper, M. A., Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 2004, 101 (36), 13368-73.
12. Simpson, R. J.; Jensen, S. S.; Lim, J. W., Proteomic profiling of exosomes: current perspectives. Proteomics 2008, 8 (19), 4083-99.
13. Rabinowits, G.; Gercel-Taylor, C.; Day, J. M.; Taylor, D. D.; Kloecker, G. H., Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009, 10 (1), 42-6.
14. Pegtel, D. M.; Cosmopoulos, K.; Thorley-Lawson, D. A.; van Eijndhoven, M. A.; Hopmans, E. S.; Lindenberg, J. L.; de Gruijl, T. D.; Wurdinger, T.; Middeldorp, J. M., Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 2010, 107 (14), 6328-33.
15. Choi, D. S.; Kim, D. K.; Kim, Y. K.; Gho, Y. S., Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013, 13 (10-11), 1554-71.
16. Gangoda, L.; Liem, M.; Ang, C. S.; Keerthikumar, S.; Adda, C. G.; Parker, B. S.; Mathivanan, S., Proteomic Profiling of Exosomes Secreted by Breast Cancer Cells with Varying Metastatic Potential. Proteomics 2017, 17 (23-24).
17. Sinha, A.; Principe, S.; Alfaro, J.; Ignatchenko, A.; Ignatchenko, V.; Kislinger, T., Proteomic Profiling of Secreted Proteins, Exosomes, and Microvesicles in Cell Culture Conditioned Media. Methods Mol Biol 2018, 1722, 91-102.
18. Sheridan, C., Exosome cancer diagnostic reaches market. Nat Biotechnol 2016, 34 (4), 359-60.
19. Altadill, T.; Campoy, I.; Lanau, L.; Gill, K.; Rigau, M.; Gil-Moreno, A.; Reventos, J.; Byers, S.; Colas, E.; Cheema, A. K., Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles. Plos One 2016, 11 (3).
20. Puhka, M.; Takatalo, M.; Nordberg, M. E.; Valkonen, S.; Nandania, J.; Aatonen, M.; Yliperttula, M.; Laitinen, S.; Velagapudi, V.; Mirtti, T.; Kallioniemi, O.; Rannikko, A.; Siljander, P. R.; Af Hallstrom, T. M., Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes. Theranostics 2017, 7 (16), 3824-3841.
21. Luo, X.; An, M.; Cuneo, K. C.; Lubman, D. M.; Li, L., High-Performance Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry for Exosome Metabolomics. Anal Chem 2018, 90 (14), 8314-8319.
22. Sreekumar, A.; Poisson, L. M.; Rajendiran, T. M.; Khan, A. P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R. J.; Li, Y.; Nyati, M. K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G. S.; Ghosh, D.; Pennathur, S.; Alexander, D. C.; Berger, A.; Shuster, J. R.; Wei, J. T.; Varambally, S.; Beecher, C.; Chinnaiyan, A. M., Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457 (7231), 910-4.
23. Claudino, W. M.; Quattrone, A.; Biganzoli, L.; Pestrin, M.; Bertini, I.; Di Leo, A., Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 2007, 25 (19), 2840-6.
24. Zhao, H. Y.; Yang, L. F.; Baddour, J.; Achreja, A.; Bernard, V.; Moss, T.; Marini, J. C.; Tudawe, T.; Seviour, E. G.; San Lucas, F. A.; Alvarez, H.; Gupta, S.; Maiti, S. N.; Cooper, L.; Peehl, D.; Ram, P. T.; Maitra, A.; Nagrath, D., Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 2016, 5.
25. Wang, M. X.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W. T.; Criisemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderon, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C. C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C. C.; Yang, Y. L.; Humpf, H. U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O'Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J. Q.; Neupane, R.; Gurr, J.; Rodriguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P. M.; Phapale, P.; Nothias, L. F.; Alexandrovr, T.; Litaudon, M.; Wolfender, J. L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D. T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Muller, R.; Waters, K. M.; Shi, W. Y.; Liu, X. T.; Zhang, L. X.; Knight, R.; Jensen, P. R.; Palsson, B. O.; Pogliano, K.; Linington, R. G.; Gutierrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N., Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology 2016, 34 (8), 828-837.
26. Sheikh, K. D.; Khanna, S.; Byers, S. W.; Fornace, A., Jr.; Cheema, A. K., Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. J Biomol Tech 2011, 22 (1), 1-4.
27. Wang, X.; Shen, F.; Freisheim, J. H.; Gentry, L. E.; Ratnam, M., Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 1992, 44 (9), 1898-901.
28. Weitman, S. D.; Lark, R. H.; Coney, L. R.; Fort, D. W.; Frasca, V.; Zurawski, V. R., Jr.; Kamen, B. A., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992, 52 (12), 3396-401.
29. Hartmann, L. C.; Keeney, G. L.; Lingle, W. L.; Christianson, T. J.; Varghese, B.; Hillman, D.; Oberg, A. L.; Low, P. S., Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 2007, 121 (5), 938-42.
30. Arab, J. P.; Arrese, M.; Trauner, M., Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu Rev Pathol-Mech 2018, 13, 321-350.
31. Frosst, P.; Blom, H. J.; Milos, R.; Goyette, P.; Sheppard, C. A.; Matthews, R. G.; Boers, G. J.; den Heijer, M.; Kluijtmans, L. A.; van den Heuvel, L. P.; et al., A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995, 10 (1), 111-3.
32. Mozaffarian, D.; Wilson, P. W. F.; Kannel, W. B., Beyond established and novel risk factors - Lifestyle risk factors for cardiovascular disease. Circulation 2008, 117 (23), 3031-3038.
33. Sacks, F. M.; Katan, M., Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med 2002, 113 Suppl 9B, 13S-24S.
34. Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N. M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K. C. H.; Aalvink, S.; Martinez, L. O.; Dumas, M. E.; Maiter, D.; Loumaye, A.; Hermans, M. P.; Thissen, J. P.; Belzer, C.; de Vos, W. M.; Cani, P. D., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine 2017, 23 (1), 107-113.
35. Krishnan, S.; Ding, Y.; Saedi, N.; Choi, M.; Sridharan, G. V.; Sherr, D. H.; Yarmush, M. L.; Alaniz, R. C.; Jayaraman, A.; Lee, K., Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages. Cell Rep 2018, 23 (4), 1099-1111.
36. Mills, E. L.; Pierce, K. A.; Jedrychowski, M. P.; Garrity, R.; Winther, S.; Vidoni, S.; Yoneshiro, T.; Spinelli, J. B.; Lu, G. Z.; Kazak, L.; Banks, A. S.; Haigis, M. C.; Kajimura, S.; Murphy, M. P.; Gygi, S. P.; Clish, C. B.; Chouchani, E. T., Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 2018, 560 (7716), 102-106.
37. Heianza, Y.; Sun, D.; Li, X.; DiDonato, J. A.; Bray, G. A.; Sacks, F. M.; Qi, L., Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut 2019, 68 (2), 263-270.
38. Zhu, W.; Gregory, J. C.; Org, E.; Buffa, J. A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R. B.; McIntyre, T. M.; Silverstein, R. L.; Tang, W. H. W.; DiDonato, J. A.; Brown, J. M.; Lusis, A. J.; Hazen, S. L., Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165 (1), 111-124.
39. Koh, A.; Molinaro, A.; Stahlman, M.; Khan, M. T.; Schmidt, C.; Manneras-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L. E.; Bergh, P. O.; Gerdes, V.; Hartstra, A.; de Brauw, M.; Perkins, R.; Nieuwdorp, M.; Bergstrom, G.; Backhed, F., Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018, 175 (4), 947-961 e17.
40. Reddy, B. S.; Watanabe, K.; Weisburger, J. H.; Wynder, E. L., Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 1977, 37 (9), 3238-42.
41. Barrett, E.; Ross, R. P.; O'Toole, P. W.; Fitzgerald, G. F.; Stanton, C., gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012, 113 (2), 411-7.
42. Stepankova, R.; Tonar, Z.; Bartova, J.; Nedorost, L.; Rossman, P.; Poledne, R.; Schwarzer, M.; Tlaskalova-Hogenova, H., Absence of Microbiota (Germ-Free Conditions) Accelerates the Atherosclerosis in ApoE-Deficient Mice Fed Standard Low Cholesterol Diet. Journal of Atherosclerosis and Thrombosis 2010, 17 (8), 796-804.
43. Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J. D.; Halsall, A.; Haselden, J. N.; Nicholls, A. W.; Wilson, I. D.; Kell, D. B.; Goodacre, R.; Human Serum Metabolome, C., Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 2011, 6 (7), 1060-83.
44. Culhane, A. C.; Thioulouse, J.; Perriere, G.; Higgins, D. G., MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 2005, 21 (11), 2789-90.
45. Wang, X. L.; Hur, H. G.; Lee, J. H.; Kim, K. T.; Kim, S. I., Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 2005, 71 (1), 214-9.
46. Thompson, L. U.; Boucher, B. A.; Liu, Z.; Cotterchio, M.; Kreiger, N., Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 2006, 54 (2), 184-201.
47. Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M. L., Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 2010, 68 (10), 571-603.
48. Zhang, T.; Hu, Q.; Shi, L.; Qin, L.; Zhang, Q.; Mi, M., Equol Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice by Inhibiting Endoplasmic Reticulum Stress via Activation of Nrf2 in Endothelial Cells. Plos One 2016, 11 (12), e0167020.
49. Wikoff, W. R.; Anfora, A. T.; Liu, J.; Schultz, P. G.; Lesley, S. A.; Peters, E. C.; Siuzdak, G., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009, 106 (10), 3698-703.
50. Quigley, E. M., Gut bacteria in health and disease. Gastroenterol Hepatol (N Y) 2013, 9 (9), 560-9.
51. Wang, Z. N.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; Dugar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X. M.; Chung, Y. M.; Wu, Y. P.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H. W.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57-U82.
52. Rufer, C. E.; Kulling, S. E., Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 2006, 54 (8), 2926-31.
53. Jackman, K. A.; Woodman, O. L.; Sobey, C. G., Isoflavones, equol and cardiovascular disease: pharmacological and therapeutic insights. Curr Med Chem 2007, 14 (26), 2824-30.
54. Van Horn, L.; McCoin, M.; Kris-Etherton, P. M.; Burke, F.; Carson, J. A.; Champagne, C. M.; Karmally, W.; Sikand, G., The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc 2008, 108 (2), 287-331.
55. de Mello, V. D.; Paananen, J.; Lindstrom, J.; Lankinen, M. A.; Shi, L.; Kuusisto, J.; Pihlajamaki, J.; Auriola, S.; Lehtonen, M.; Rolandsson, O.; Bergdahl, I. A.; Nordin, E.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Landberg, R.; Eriksson, J. G.; Tuomilehto, J.; Hanhineva, K.; Uusitupa, M., Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 2017, 7, 46337.
56. Bendheim, P. E.; Poeggeler, B.; Neria, E.; Ziv, V.; Pappolla, M. A.; Chain, D. G., Development of indole-3-propionic acid (OXIGON (TM)) for Alzheimer's disease. J Mol Neurosci 2002, 19 (1-2), 213-217.
57. Snyder, N. W.; Khezam, M.; Mesaros, C. A.; Worth, A.; Blair, I. A., Untargeted Metabolomics from Biological Sources Using Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS). Jove-J Vis Exp 2013, (75).
58. Junot, C.; Fenaille, F.; Colsch, B.; Becher, F., High Resolution Mass Spectrometry Based Techniques at the Crossroads of Metabolic Pathways. Mass Spectrom Rev 2014, 33 (6), 471-500.
59. Fenaille, F.; Barbier Saint-Hilaire, P.; Rousseau, K.; Junot, C., Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand? J Chromatogr A 2017, 1526, 1-12.
60. Zhou, J.; Li, Y.; Chen, X.; Zhong, L.; Yin, Y., Development of data-independent acquisition workflows for metabolomic analysis on a quadrupole-orbitrap platform. Talanta 2017, 164, 128-136.
61. Bruderer, T.; Varesio, E.; Hidasi, A. O.; Duchoslav, E.; Burton, L.; Bonner, R.; Hopfgartner, G., Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Anal Bioanal Chem 2018, 410 (7), 1873-1884.
62. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M., MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 2015, 12 (6), 523-6.
63. Li, H.; Cai, Y.; Guo, Y.; Chen, F.; Zhu, Z. J., MetDIA: Targeted Metabolite Extraction of Multiplexed MS/MS Spectra Generated by Data-Independent Acquisition. Anal Chem 2016, 88 (17), 8757-64.
64. Zhang, Y.; Bilbao, A.; Bruderer, T.; Luban, J.; Strambio-De-Castillia, C.; Lisacek, F.; Hopfgartner, G.; Varesio, E., The Use of Variable Q1 Isolation Windows Improves Selectivity in LC–SWATH–MS Acquisition. Journal of Proteome Research 2015, 14 (10), 4359-4371.
65. Domon, B.; Aebersold, R., Options and considerations when selecting a quantitative proteomics strategy. Nature Biotechnology 2010, 28 (7), 710-721.
66. Arnhard, K.; Gottschall, A.; Pitterl, F.; Oberacher, H., Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2015, 407 (2), 405-414.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71451-
dc.description.abstract代謝體學(Metabolomics)是一門探討生物體中小分子代謝物之組成的學門,相較於蛋白質體學、基因體學,代謝物在生物體中的狀態能夠提供最接近表現型的資訊。由於其結構差異,代謝物在生物體中具有提供能量、提供大分子結構基礎、傳遞訊息、作為蛋白質受體、輔酶等等功能。了解代謝物的全貌與交互關係,是近十年來生物化學家致力的課題。代謝體學又分成標靶代謝體學(targeted metabolomics)與非標靶代謝體學(untargeted metabolomics)兩種,非標靶代謝體學利用串聯質譜(MS/MS)圖譜與線上資料庫比對,進行無偏頗的代謝物結構鑑定。我們使用液相層析-串聯質譜儀(Liquid Chromatography-Mass Spectrometry)方法進行胞外小體(exosome)與載脂蛋白E基因剔除大鼠(ApoE-/- rat)之非標靶代謝體分析,並發現癌症轉移相關的小分子生物標記物(biomarker)與可能作為抗心血管疾病藥物之代謝物。此外我們更開發了一套新的非數據依賴擷取方法:選擇邊緣擷取(Selected MARgins acquisiTion),此方法使用特別設計過的前驅物隔離區間(isolation window)並藉此增進串聯質譜圖譜的反褶積(deconvolution)與代謝物鑑定結果。
腫瘤衍生胞外小體(tumor-derived exosome)在癌症發展與轉移中扮演重要角色,胞外小體也被發現富含生物標記物,大量微小分子核糖核酸(miRNA)和蛋白質生物標記物被發現,甚至有些生物標記物已經在臨床使用。相對的,胞外小體中的小分子代謝物組成或小分子生物標記物則較少被關注,我們應用蛋白質體研究中廣為使用的奈流超高效液相層析(nanoUPLC)-串聯質譜法,分析不同癌症細胞株分泌之胞外小體的代謝體差異,我們發現少數代謝物具有顯著性差異,具有作為癌症轉移生物標記物之潛力。
就如同癌症細胞會利用分泌胞外小體進循環系統與其他器官溝通,腸道菌也會分泌代謝物進入宿主的循環系統,進而影響了宿主的代謝。許多證據表明腸道菌與宿主的代謝與疾病進程相關,在脂肪代謝、心血管疾病的影響上更是極其顯著。我們利用非標靶代謝體學,比較無特定病原(specific-pathogen-free)和無菌(germ free)之ApoE-/-大鼠的血清和肝臟中代謝物的差異,了解腸道菌帶來的代謝體變化,並發現許多腸道菌衍生代謝物與心血管疾病相關。
最後我們開發了一種新的非數據依賴擷取方法,在此方法中我們根據LC-MS的波峰分布挑選一組非等距之前驅物隔離區間,並藉此得到更清楚、更容易進行反褶積(deconvolution)的二級質譜圖譜,從而得到更完整也更可信之代謝物鑑定。
在此研究中,我們將非標靶代謝體應用在不同的生物系統上,包含開發癌症轉移相關之生物標記物與發現心血管疾病相關之代謝物。此外,我們開發了一個新的非數據依賴擷取方法,利用設計過的前驅物隔離區間增進串聯質譜數據的反褶積。
zh_TW
dc.description.abstractMetabolomics is the study of investigating the small molecules composition of biological samples. Compared to proteomics or genomics, the information metabolomics provides is more related to phenotype. Due to the high diversity of metabolite structures, metabolites act as many different roles in organisms, including energy preserver, building blocks of biomolecules, hormone, neurotransmitter, coenzyme, etc. Biochemists have been devoted to understanding the whole metabolome and the interaction between metabolites and enzymes in the past decade. Unlike targeted metabolomics, untargeted metabolomics utilizes MS/MS comparison with online databases to identified regulated metabolites in an unbiased fashion. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method to study the metabolome in tumor-derived exosomes and ApoE knockout rats to find small molecule biomarkers for organ-tropic metastasis and potential drugs for cardiovascular disease. We further developed a data-independent method, Selected MARgins acquisiTion (SMART), for untargeted metabolomic featuring designed isolation windows. SMART improved MS/MS spectrum deconvolution and resulted in better metabolite identification.
Recently, tumor-derived exosomes received tremendous attention because of its crucial role in cancer progression and metastasis. Tumor-derived exosomes were a rich source of biomarkers, some protein and microRNA biomarkers were discovered and even translated into clinical use. However, few studies focused on metabolite composition or biomarkers in exosomes. We performed nanoUPLC-MS/MS-based untargeted metabolomics to analyze the differences between exosomes secreted from cancerous cell lines. We’ve found some metabolites which were significantly changed and could be potential biomarkers for tumor metastasis.
As tumors conduct cross-organ communication by secreting exosomes to the circulation system, gut microbiota also tends to secrete metabolites to the circulation system and affect the host’s metabolism. Evidence showed that gut microbiota is associated with several metabolic pathways and disease progression, including the lipid metabolism pathway and cardiovascular disease. To survey the effect of gut microbiota on cardiovascular disease, we applied untargeted metabolomics to study the differences between germ-free and specific-pathogen-free ApoE-/- rats. We have discovered some microbiota-derived metabolites related to cardiovascular disease.
Finally, we developed a novel data-independent acquisition (DIA) method named SMART. When using the SMART method, we generated a set of unequal width isolation windows according to the LC-MS peak distribution. Consequently, we could simplify MS/MS spectra and improve peaks deconvolution, and resulted in a more comprehensive and convincing metabolites identification.
In this study, we applied untargeted metabolomics on different biological systems to discover tumor-metastasis-associated biomarkers and cardiovascular-disease-related metabolites. Furthermore, we developed a new DIA method, SMART, featuring designed isolation windows and improve MS/MS data deconvolution.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:00:58Z (GMT). No. of bitstreams: 1
ntu-108-R05223174-1.pdf: 8996819 bytes, checksum: a5e7f3e6343d516b72a0a71a14f830ea (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 i
摘要 iv
Abstract vi
目錄 ix
圖目錄 xii
表目錄 xiii
Chapter 1. Untargeted Metabolomics Profiling of Extracellular Vesicles 1
1-1 Introduction 1
1-2 Materials and Methods 2
1-2-1 Cell Culture, Exosome Purification and Characterization 2
1-2-2 Sample Preparation 3
1-2-3 NanoUPLC-MS/MS Parameters 4
1-2-4 Data processing and interpretation 5
1-3 Results and Discussion 6
1-3-1 Isolation and Characterization of TDEs 6
1-3-2 The Metabolites Composition in Exosomes Differ from Their Origin 8
1-3-3 Metastasis Biomarker Discovery by Exosome Untargeted Metabolomics 11
1-3-4 Triplicate Tumor-Derived Exosome 13
1-4 Conclusion 16
Chapter 2. Studying Gut-Microbiota-Derived Metabolic Changes Using an ApoE Knockout Rat Model 18
2-1 Introduction 18
2-2 Materials and methods 19
2-2-1 Animal 19
2-2-2 Histopathological Evaluation 20
2-2-3 Metabolites Extraction 20
2-2-4 UPLC-MS/MS Parameter 21
2-2-5 Data Processing and Statistical Analysis 22
2-3 Results and Discussion 23
2-3-1 Gut Microbiota Attenuated Atherosclerosis in ApoE-/- Rats 23
2-3-2 Untargeted Metabolomics Profiling of GF and SPF ApoE-/- Rats 24
2-3-3 Gut Microbiota-Related Compounds Were Up-Regulated in SPF Rats 29
2-3-4 Gram-positive and Gram-negative Bacteria were both Responsible for the Protective Effect 37
2-4 Conclusion 39
Chapter 3. Selected SWATH-MS Windows Enhanced Metabolites Identification 42
3-1 Introduction 42
3-2 Materials and Methods 44
3-2-1 Isolation Margins Selecting 44
3-2-2 Rat Serum Sample Preparation 45
3-2-3 UPLC-MS/MS Parameter 46
3-2-4 Data Processing 50
3-3 Results and discussion 52
3-3-1 The Selected Margins of Rat Serum Extracts 52
3-3-2 The ID Performance of SMART is Better Than Conventional SWATH or AIF 53
3-3-3 A Smaller Scan Range Gave a Similar Result 58
3-4 Conclusion 59
References 61
Appendix 1. The CCH Lab Untargeted Metabolomics SOP. 70
Appendix 2. Table of Abbreviation 81
dc.language.isoen
dc.subject非標靶代謝體學zh_TW
dc.subject癌症生物標記物zh_TW
dc.subject腸道菌zh_TW
dc.subject心血管疾病zh_TW
dc.subject非數據依賴擷取zh_TW
dc.subject胞外小體zh_TW
dc.subject奈流超高效液相層析zh_TW
dc.subjectcardiovascular diseaseen
dc.subjectuntargeted metabolomicsen
dc.subjectgut microbiotaen
dc.subjectcancer biomarkeren
dc.subjectnanoUPLCen
dc.subjectDIAen
dc.subjectexosomeen
dc.title非標靶代謝體學的方法開發與應用zh_TW
dc.titleMethodology Development and Application of Untargeted Metabolomicsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玉如,莊曉莉,沈湯龍
dc.subject.keyword非標靶代謝體學,胞外小體,奈流超高效液相層析,癌症生物標記物,腸道菌,心血管疾病,非數據依賴擷取,zh_TW
dc.subject.keyworduntargeted metabolomics,exosome,nanoUPLC,cancer biomarker,gut microbiota,cardiovascular disease,DIA,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201900431
dc.rights.note有償授權
dc.date.accepted2019-02-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved