請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71449
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張崇毅(Chung-I Chang) | |
dc.contributor.author | Chuang-Kai Chueh | en |
dc.contributor.author | 闕壯凱 | zh_TW |
dc.date.accessioned | 2021-06-17T06:00:56Z | - |
dc.date.available | 2020-02-15 | |
dc.date.copyright | 2019-02-15 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-12 | |
dc.identifier.citation | 1. Silhavy, T.J., D. Kahne, and S. Walker, The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2010. 2(5): p. a000414.
2. Billaudeau, C., et al., Contrasting mechanisms of growth in two model rod shaped bacteria. Nat Commun, 2017. 8: p. 15370. 3. Miller, S.I. and N.R. Salama, The gram-negative bacterial periplasm: Size matters. PLoS Biol, 2018. 16(1): p. e2004935. 4. Maurizi, M.R., Love it or cleave it: tough choices in protein quality control. Nat Struct Biol, 2002. 9(6): p. 410-2. 5. Beebe, K.D., et al., Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry, 2000. 39(11): p. 3149-55. 6. Rojas, E.R., et al., The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature, 2018. 559(7715): p. 617-621. 7. Vollmer, W., D. Blanot, and M.A. de Pedro, Peptidoglycan structure and architecture. FEMS Microbiol Rev, 2008. 32(2): p. 149-67. 8. Glauner, B. and J.V. Holtje, Growth pattern of the murein sacculus of Escherichia coli. J Biol Chem, 1990. 265(31): p. 18988-96. 9. Labischinski, H., et al., Direct proof of a 'more-than-single-layered' peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J Bacteriol, 1991. 173(2): p. 751-6. 10. Singh, S.K., et al., Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10956-61. 11. Merdanovic, M., et al., Protein quality control in the bacterial periplasm. Annu Rev Microbiol, 2011. 65: p. 149-68. 43 12. Miot, M. and J.M. Betton, Protein quality control in the bacterial periplasm.Microb Cell Fact, 2004. 3(1): p. 4. 13. Hengge, R. and B. Bukau, Proteolysis in prokaryotes: protein quality control and regulatory principles. Mol Microbiol, 2003. 49(6): p. 1451-62. 14. Mendoza-Espinosa, P., et al., Disorder-to-order conformational transitions in protein structure and its relationship to disease. Mol Cell Biochem, 2009. 330(1-2): p. 105-20. 15. Keiler, K.C., P.R. Waller, and R.T. Sauer, Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science, 1996. 271(5251): p. 990-3. 16. Wilken, C., et al., Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell, 2004. 117(4): p. 483-94. 17. Weski, J., et al., Chemical biology approaches reveal conserved features of a Cterminal processing PDZ protease. Chembiochem, 2012. 13(3): p. 402-8. 18. Damron, F.H. and J.B. Goldberg, Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol, 2012. 84(4): p.595-607. 19. Liao, D.I., et al., Crystal structures of the photosystem II D1 C-terminal processing protease. Nat Struct Biol, 2000. 7(9): p. 749-53. 20. Wang, C.Y., et al., Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect Immun, 2012. 80(10): p. 3399-409. 21. Hara, H., et al., Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli. J Bacteriol, 1989. 171(11): p. 5882-9.44 22. Silber, K.R., K.C. Keiler, and R.T. Sauer, Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci U S A, 1992. 89(1): p. 295-9. 23. Keiler, K.C. and R.T. Sauer, Identification of active site residues of the Tsp protease. J Biol Chem, 1995. 270(48): p. 28864-8. 24. Su, M.Y., et al., Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat Commun, 2017. 8(1): p. 1516. 25. Lad, S.P., et al., Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response. J Bacteriol, 2007. 189(18): p. 6619-25. 26. Reiling, S.A., et al., Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology, 2005. 151(Pt 7): p. 2251-61. 27. Kohlmann, F., et al., Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441. J Bacteriol, 2015. 197(1): p. 211-8. 28. Schwechheimer, C., D.L. Rodriguez, and M.J. Kuehn, NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen, 2015. 4(3): p. 375-89. 29. Seoane, A., et al., Multiple antibiotic susceptibility associated with inactivation of the prc gene. J Bacteriol, 1992. 174(23): p. 7844-7. 30. Heras, B. and J.L. Martin, Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr, 2005. 61(Pt 9): p. 1173-80. 31. Heras, B., et al., Dehydration converts DsbG crystal diffraction from low to high resolution. Structure, 2003. 11(2): p. 139-45. 32. Rodgers, D.W., Cryocrystallography. Structure, 1994. 2(12): p. 1135-40. 45 33. Harp, J.M., et al., Macromolecular crystal annealing: evaluation of techniques and variables. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 7): p. 1329-34. 34. Zander, U., et al., MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr D Biol Crystallogr, 2015. 71(Pt 11): p. 2328-43. 35. Scarborough, N.M., et al., Dynamic X-ray diffraction sampling for protein crystal positioning. J Synchrotron Radiat, 2017. 24(Pt 1): p. 188-195. 36. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-26. 37. Parsons, S., Introduction to twinning. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 11): p. 1995-2003. 38. Matthews, B.W., Solvent content of protein crystals. J Mol Biol, 1968. 33(2): p.491-7. 39. Kantardjieff, K.A. and B. Rupp, Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci, 2003. 12(9): p. 1865-71. 40. Dodson, E.J., M. Winn, and A. Ralph, Collaborative Computational Project, number 4: providing programs for protein crystallography. Methods Enzymol,1997. 277: p. 620-33. 41. Taylor, G., The phase problem. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 11): p. 1881-90. 42. McCoy, A.J., et al., Phaser crystallographic software. J Appl Crystallogr, 2007.40(Pt 4): p. 658-674. 43. Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr, 2006. 62(Pt 9): p. 1002-11.46 44. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 355-67. 45. Vagin, A. and A. Teplyakov, Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 1): p. 22-5. 46. Cowtan, K., Fitting molecular fragments into electron density. Acta Crystallogr D Biol Crystallogr, 2008. 64(Pt 1): p. 83-9. 47. Adams, P.D., et al., The Phenix software for automated determination of macromolecular structures. Methods, 2011. 55(1): p. 94-106. 48. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2126-32. 49. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 1): p. 12-21. 50. Mastny, M., et al., CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis. Cell, 2013. 155(3): p. 647-58 51. Sohn, J., R.A. Grant, and R.T. Sauer, Allosteric activation of DegS, a stress sensor PDZ protease. Cell, 2007. 131(3): p. 572-83. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71449 | - |
dc.description.abstract | 由於細菌細胞壁之周質(periplasm)中缺乏三磷酸腺苷(ATP),細菌必須透過具有特殊調節機制及不依賴水解三磷酸腺苷(ATP-independent)的蛋白酶(protease)來降解錯誤或廢棄不用的蛋白。在大腸桿菌中,具有 PDZ 結構域(PDZ domain)的蛋白酶 Prc 參與蛋白質品質管控(protein quality control)及調節肽聚醣(peptidoglycan)型細胞壁合成。本研究以晶體學(crystallography)得到靜止態(resting state)的 Prc 蛋白酶結構,與先前發表酶受質結合之活化狀態(substrate-bound activated state)不同。在Prc 蛋白酶未活化狀態下,其高度可變性(flexibility)的 PDZ 結構域位於碗狀的單體中,並且其肽結合凹槽(peptide-binding cleft)朝向開放構形的蛋白酶結構域(protease domain)。與 PDZ 結構域相連之第九螺旋(helix h9)形成向外延伸之結構。當 PDZ 結構域捕捉到特定多肽之 C 端(C terminus),蛋白酶結構域內部會與第九螺旋形成狹窄的通道,並將多肽拉入水解位點中心(proteolytic site)。本研究還以晶體結構學得知 Prc 鉸鏈區的胺基酸(hinge residues)會與多肽之 C 端結合,來介導 PDZ 結構域與
蛋白酶結構域之間的相互作用。藉由酶受質所引起 Prc 構形變化,可合理解釋酶受質如何被 Prc 識別與活化蛋白酶的功能。 | zh_TW |
dc.description.abstract | As the periplasm lacks ATP, periplasmic proteases must implement distinct mechanisms for regulation of degradation activity against defective and inactive proteins. The Escherichia coli periplasmic PDZ-protease Prc is involved in protein quality control and the turnover of peptidoglycan during cell wall growth. This thesis shows that crystal structures of Prc in a unliganded resting conformation differ considerably from the previous published stucture of Prc in a liganded activated state. In a resting conformation, the flexible PDZ domain is located inside the bowl-shape body, and its peptide-binding
celft is exposed to an open active center cleft. The partially unfolded helix h9 linking the PDZ domain adopts an extended conformation. The PDZ domain captures C terminus of a specific polypeptide substrate, and subsequently pulls the cleavage site into a narrow passage formed by the protease platform and the helix h9. These crystal structures further demonstrate hinge residues mediate the interplay of the PDZ domain and the protease platform. The thesis provides structural insight for understanding the mechanism of substrate recognition and Prc activation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:00:56Z (GMT). No. of bitstreams: 1 ntu-108-R05b46021-1.pdf: 6473532 bytes, checksum: 9ffa559541de9d05c625c2c13754e97e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書.......................................... i
Acknowledgements........................................ ii 中文摘要.................................................iii Abstract.................................................iv List of Abbreviation....................................vii List of Figures.......................................... x List of Tables........................................ xiii Chapter 1 Introduction 1-1 Cell envelope....................................... 1 1-2 Peptidoglycan....................................... 4 1-3 Protein quality control............................. 6 1-4 Carboxy-terminal processing peptidase............... 8 1-5 Molecular mechanism NlpI-Prc system................. 9 1-6 Aims............................................... 11 Chapter 2 Materials and Methods 2-1 Mutagenesis.........................................12 2-2 Expression and purification of protein 2.2.1 Cell Growth.......................................13 2.2.2 Purification of Prc, NlpI, MepS in E. coli....... 14 2-3 Crystallization and Data Collection 2.3.1 Crystallization by vapor-diffusion method.........16 2.3.2 Post crystallization treatment................... 18 2.3.3 Data collection.................................. 19 2-4 Structure determination............................ 22 2-5 Degradation assay by SDS-Page.......................25 2-6 Limited Proteolysis................................ 26 2-7 Analytical ultracentrifugation sedimentation velocity........................................... 26 Chapter 3 Results 3-1 Introducing Prc mutants with abolished ligand binding.............................................28 3-2 The structure of Prc mutants in resting state conformation........................................29 3-3 Lid-like PDZ domain relocates upon Substrate Binding............................................ 32 3-4 Conformation change of bowl-shaped body controls the access to the proteolytic groove........................ 34 Discussion.............................................. 38 Reference................................................42 Figures................................................. 47 Tables.................................................. 91 | |
dc.language.iso | zh-TW | |
dc.title | 利用尾端專一性蛋白酶Prc靜止態之結構探討對基質辨別及依賴PDZ結構域活化之機制 | zh_TW |
dc.title | Structures of the Tail-Specific Protease Prc in the Resting
State Reveal a Mechanism for Substrate Recognition and PDZ-Dependent Activation | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹迺立(Nei-Li Chan),曾秀如(Shiou-Ru Zeng) | |
dc.subject.keyword | 周質,PDZ 結構域,蛋白?,晶體結構,C 端, | zh_TW |
dc.subject.keyword | periplasm,PDZ domain,protease,crystal structure,C-terminus, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU201900368 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-12 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。