請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7143完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧 | |
| dc.contributor.author | Jung-Hui Su | en |
| dc.contributor.author | 蘇容慧 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:39:48Z | - |
| dc.date.available | 2024-08-29 | |
| dc.date.available | 2021-05-19T17:39:48Z | - |
| dc.date.copyright | 2019-08-29 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | Atala, A., Kasper, F. K., & Mikos, A. G. (2012). Engineering complex tissues. Sci Transl Med, 4(160), 160rv112. doi:10.1126/scitranslmed.3004890
Bajaj, P., Schweller, R. M., Khademhosseini, A., West, J. L., & Bashir, R. (2014). 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng, 16, 247-276. doi:10.1146/annurev-bioeng-071813-105155 Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26), 6020-6041. doi:10.1016/j.biomaterials.2012.04.050 Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends Biotechnol, 30(10), 546-554. doi:10.1016/j.tibtech.2012.07.005 Chen, Q., Roether, J. A., & Boccaccini, A. R. (2008). Tissue engineering scaffolds from bioactive glass and composite materials. Topics in Tissue Engineering, 4, 1-27. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. J Biol Eng, 9, 4. doi:10.1186/s13036-015-0001-4 Cima, M., Sachs, E., Cima, L., Yoo, J., Khanuja, S., Borland, S., . . . Giordano, R. (1994). computer-derived microstructures by 3D Printing: Sio-and Structural Materials. Paper presented at the 1994 International Solid Freeform Fabrication Symposium. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev, 107, 367-392. doi:10.1016/j.addr.2016.06.012 Fisher, J. P., Dean, D., & Mikos, A. G. (2002). Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 23(22), 4333-4343. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12219823 Giannoudis, P. V., Dinopoulos, H., & Tsiridis, E. (2005). Bone substitutes: an update. Injury, 36 Suppl 3(3, Supplement), S20-27. doi:10.1016/j.injury.2005.07.029 Gregor, A., Filova, E., Novak, M., Kronek, J., Chlup, H., Buzgo, M., . . . Hosek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng, 11, 31. doi:10.1186/s13036-017-0074-3 Griffith, L. G., Wu, B., Cima, M. J., Powers, M. J., Chaignaud, B., & Vacanti, J. P. (1997). In vitro organogenesis of liver tissue. Ann N Y Acad Sci, 831(1), 382-397. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9616729 Harrison, J. H., Merrill, J. P., & Murray, J. E. (1956). Renal homotransplantation in identical twins. Surg Forum, 6, 432-436. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/13391513 Hutmacher, D. W., Schantz, J. T., Lam, C. X., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med, 1(4), 245-260. doi:10.1002/term.24 Kolff, W. J., & Berk, H. T. J. (1944). The artificial kidney: A dialyser with a great area. Acta Medica Scandinavica, 117(2), 121-134. Retrieved from <Go to ISI>://WOS:000200661300001 Landers, R., Mülhaupt, R. J. M. M., & Engineering. (2000). Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers. 282(1), 17-21. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529 Lever, T., Haines, P., Rouquerol, J., Charsley, E. L., Van Eckeren, P., & Burlett, D. J. (2014). ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014). Pure and Applied Chemistry, 86(4), 545-553. doi:10.1515/pac-2012-0609 Li, S. (2017). 2 - Synthetic biodegradable medical polyesters. In X. Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 37-78): Woodhead Publishing. Lichte, P., Pape, H. C., Pufe, T., Kobbe, P., & Fischer, H. (2011). Scaffolds for bone healing: concepts, materials and evidence. Injury, 42(6), 569-573. doi:10.1016/j.injury.2011.03.033 Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresour Technol, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., . . . Vunjak-Novakovic, G. (2004). Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Annals of Biomedical Engineering, 32(1), 112-122. doi:DOI 10.1023/B:ABME.0000007796.48329.b4 Melchels, F. P., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121-6130. doi:10.1016/j.biomaterials.2010.04.050 Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65(1-2), 55-63. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6606682 Murphy, C. M., Haugh, M. G., & O'Brien, F. J. (2010). The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 31(3), 461-466. doi:10.1016/j.biomaterials.2009.09.063 Nerem, R. M. (1991). Cellular engineering. Annals of Biomedical Engineering, 19(5), 529-545. doi:10.1007/bf02367396 Nerem, R. M., & Schutte, S. C. (2014). Chapter 2 - The Challenge of Imitating Nature. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (pp. 9-24). Boston: Academic Press. Nohutcu, R. M., McCauley, L. K., Koh, A. J., & Somerman, M. J. (1997). Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol, 68(4), 320-327. doi:10.1902/jop.1997.68.4.320 Olszta, M. J., Cheng, X. G., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., . . . Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science & Engineering R-Reports, 58(3-5), 77-116. doi:10.1016/j.mser.2007.05.001 Pattanayak, D. K., Fukuda, A., Matsushita, T., Takemoto, M., Fujibayashi, S., Sasaki, K., . . . Kokubo, T. (2011). Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater, 7(3), 1398-1406. doi:10.1016/j.actbio.2010.09.034 Pignatello, R. (2013). Advances in biomaterials science and biomedical applications: BoD–Books on Demand. Polo-Corrales, L., Latorre-Esteves, M., & Ramirez-Vick, J. E. (2014). Scaffold design for bone regeneration. Journal of nanoscience and nanotechnology, 14(1), 15-56. doi:10.1166/jnn.2014.9127 Rezwan, K., Chen, Q., Blaker, J., & Boccaccini, A. R. J. B. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. 27(18), 3413-3431. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl, 78, 1246-1262. doi:10.1016/j.msec.2017.05.017 Rouwkema, J., Rivron, N. C., & van Blitterswijk, C. A. (2008). Vascularization in tissue engineering. Trends in biotechnology, 26(8), 434-441. doi:https://doi.org/10.1016/j.tibtech.2008.04.009 Sin, L. T., Rahmat, A. R., & Rahman, W. A. W. A. (2013). 2 - Synthesis and Production of Poly(lactic Acid). In L. T. Sin, A. R. Rahmat, & W. A. W. A. Rahman (Eds.), Polylactic Acid (pp. 71-107). Oxford: William Andrew Publishing. Skalak, R., & Fox, C. J. I. N. Y., NY, USA. (1988). Tissue Engineering, Alan R. Liss. Thavornyutikarn, B., Chantarapanich, N., Sitthiseripratip, K., Thouas, G. A., & Chen, Q. (2014). Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater, 3(2), 61-102. doi:10.1007/s40204-014-0026-7 Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet, 354 Suppl 1, SI32-34. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10437854 Wang, W. L., Cheah, C. M., Fuh, J. Y. H., & Lu, L. (1996). Influence of process parameters on stereolithography part shrinkage. Materials & Design, 17(4), 205-213. doi:Doi 10.1016/S0261-3069(97)00008-3 Whang, K., Healy, K. E., Elenz, D. R., Nam, E. K., Tsai, D. C., Thomas, C. H., . . . Sprague, S. M. (1999). Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng, 5(1), 35-51. doi:10.1089/ten.1999.5.35 Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953. doi:https://doi.org/10.1016/j.biomaterials.2008.04.023 Woodard, J. R., Hilldore, A. J., Lan, S. K., Park, C., Morgan, A. W., Eurell, J. A. C., . . . Johnson, A. J. W. J. B. (2007). The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. 28(1), 45-54. Wu, B. M., Borland, S. W., Giordano, R. A., Cima, L. G., Sachs, E. M., & Cima, M. J. (1996). Solid free-form fabrication of drug delivery devices. Journal of Controlled Release, 40(1-2), 77-87. doi:Doi 10.1016/0168-3659(95)00173-5 Wu, B. M., Cima, M. J. J. P. E., & Science. (1999). Effects of solvent‐particle interaction kinetics on microstructure formation during three‐dimensional printing. 39(2), 249-260. Yang, S., Leong, K.-F., Du, Z., & Chua, C.-K. J. T. e. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. 7(6), 679-689. Yousefi, A.-M., James, P. F., Akbarzadeh, R., Subramanian, A., Flavin, C., & Oudadesse, H. (2016). Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem cells international, 2016, 6180487-6180487. doi:10.1155/2016/6180487 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7143 | - |
| dc.description.abstract | 過去研究指出骨組織工程支架的最適孔徑為100~350 μm,近期則另有文獻指出類骨細胞被培養於孔徑為700 μm的支架中與被培養於孔徑為350 μm的支架中七天後的增生情形無統計上顯著差異。然而以往文獻中採用的支架大部分為多孔性支架,而較缺乏探討具有狹長形溝槽狀構造且其溝槽寬度在200 μm以下的支架其最適於骨細胞生長與沉積骨質的溝槽寬度各為何。本研究的目的是探討當類骨細胞被培養於具有狹長形溝槽狀構造且其溝槽寬度範圍在200 μm以下的支架上時,最適於類骨細胞生長與成骨分化的溝槽寬度值各為何。本實驗中藉由熔融沉積成型之三維列印機列印具有「支柱(strut)-間隙(gap)-支柱(strut)-間隙(gap)」重複出現之結構的支架(scaffolds)。我們設計了三種具有不同間隙寬度(gap width)的溝槽式結構支架,其間隙寬度的預設值分別為100、150和200 μm,並依序給予簡稱為G100組、G150組和G200組,至於支柱寬度(strut width)之預設值則皆為270 μm。我們也另外製作了一組具有完全平坦表面的全平型組支架(flat type scaffolds)作為正控制組。當支架列印完成後,我們首先於光學顯微鏡下檢視支架其內部結構的實際尺寸;也進行了支架體外靜態降解實驗、利用示差掃描量熱儀(DSC)分析列印前與列印後聚乳酸材料的熱性質變化以及利用凝膠滲透層析儀(GPC)測量列印前後材料的分子量與分子量分布的變化。最後一部分則是將MG-63類骨細胞培養於各組支架上經過1, 4, 7天後,再透過MTT試驗比較各組細胞增生情形的差異;另外也透過ARS試驗比較當類骨細胞被培養於各組支架上並受到成骨分化誘導後經過4, 7, 10天後,其鈣沉積量是否各有差異。
實驗結果顯示,G100組、G150組和G200組各組實際的間隙寬度分別為87.8±23.7、142.5±20.0、188.3±23.5 μm,而各組實際的支柱寬度分別為279.4±15.6、274.8±14.0和276.5±14.1 μm。本研究所製備之聚乳酸支架經過22週的體外降解期程後,並未觀察到有明顯的重量損失現象,而降解液也未有因聚乳酸降解而導致的較明顯的酸鹼值下降現象。DSC分析顯示經過列印後的聚乳酸其玻璃轉移溫度(Tg)在圖形上變得不明顯,此乃因列印後的聚乳酸的結晶度升高所致。GPC結果顯示列印後聚乳酸的分子量下降、分子量分布則變窄,顯示列印過程會導致較大分子的聚乳酸裂解為較小的分子。MTT試驗結果顯示,當MG-63類骨細胞被培養於各組支架上七天後,細胞於G100組支架上的增生量有顯著差異地高於G200組和全平型組,但與G150組相比則無顯著差異;至於細胞於TCPS上的增生量乃是所有組別中最高的且與其餘四組相比皆有統計上顯著差異。由ARS結果得知,於第四天和第七天時,皆以G100組和G150組其上細胞的鈣沉積量較高;於第十天時,則以G150組和G200組其上細胞的鈣沉積量較高;然而於第四天和第十天時,細胞在TCPS上的鈣沉積量仍顯著地高於各組支架。 本實驗成功製作出尺寸精度屬於可接受的三維列印支架,並釐清了當類骨細胞被培養在一系列設計有特定溝槽寬度的狹長形溝槽狀構造的支架上經過7天(觀察細胞增生)和10天(觀察細胞經成骨誘導後的鈣沉積量)後,最適於其增生與成骨分化的溝槽寬度約落在142.5±20.0 μm (即本實驗中的G150組支架),期望本研究之成果能作為未來骨再生相關研究的參考。 | zh_TW |
| dc.description.abstract | Previous studies pointed out that the optimum pore size for bone tissue engineering scaffolds was in the range of 100-350 μm. Recently another study found out that the proliferation of osteosarcoma cells cultured in scaffolds with pore size of 700 μm has no significant difference with that of the cells cultured in scaffolds with pore size of 350 μm for 7 days. However, most of the experiments described in the literature mainly investigated the effects of pore sizes of scaffolds on bone cell proliferation through fabrication of several types of porous scaffolds with various pore sizes, and so in the literature there is a lack of understanding of the effect of the structure of scaffolds with narrow groove-like configuration and groove widths of 200 μm or less designed within them on the bone cell proliferation and differentiation.
The purpose of this study is to investigate the optimal groove width between struts within the scaffolds for the growth and osteogenic differentiation of osteoblast-like cells when they are cultured on scaffolds with narrow groove-like configuration and groove widths of 200 μm or less. In this experiment, scaffolds having a structure in which a basic unit that consists of a strut and an adjacent gap reappears ('strut-gap-strut-gap' structure) was printed by a fused deposition modeling type 3D printer. We have designed three kinds of scaffolds with different preset gap widths of 100, 150 and 200 μm and referred to as G100 scaffolds, G150 scaffolds and G200 scaffolds, respectively, and the preset value of the strut width in all three groups was 270 μm. We also created a kind of flat type scaffold with fully flat surfaces as the positive control group. When the printing of the scaffolds was completed, we at first examined the actual widths of the struts and gaps within the scaffolds under an optical microscope. The in vitro static degradation experiment of the scaffolds was also carried out, and the pre-printing and post-printing materials were analyzed by differential scanning calorimetry (DSC) to explore the changes of the thermal properties caused by the printing process. The change in molecular weight and molecular weight distribution of the materials before and after printing was measured by gel permeation chromatography (GPC). In the last part, MG-63 osteoblast-like cells were cultured on each scaffold group for 1, 4, and 7 days, and then the MTT assay was performed to compare the differences between each group in cell proliferation. In addition, the ARS assay was performed to compare whether the amount of calcium deposited by osteoblast-like cells cultured on each group of scaffolds and induced by osteogenic induction medium for 4, 7, 10 days was different between each group. The experimental results show that the actual gap widths within the G100, G150, and G200 scaffolds are 87.8±23.7, 142.5±20.0, 188.3±23.5 μm, respectively, and the actual strut width within each group of scaffolds are 279.4±15.6, 274.8±14.0 and 276.5±14.1 μm, respectively. After the 22-week in vitro degradation period of the 3D-printed polylactic acid scaffolds prepared in this study, no obvious weight loss was observed, and the degradation fluid did not show a significant decrease in acid-base value due to degradation of polylactic acid. DSC analysis showed that the Tg (glass transition temperature) of the printed polylactic acid became inconspicuous in the pattern due to an increase in crystallinity of the printed polylactic acid. The GPC results showed that the molecular weight of the polylactic acid decreased and the molecular weight distribution became narrower after the 3D-printing procedure. The results of MTT assay showed that after MG-63 osteoblast-like cells were cultured in each group for seven days, the proliferation of cells on the G100 scaffolds was significantly higher than that of cells on the G200 scaffolds and on the flat-type scaffolds, but there was no significant difference when the proliferation of cells on the G100 scaffolds was compared with that of cells on the G150 scaffolds; as for the amount of proliferation of cells on TCPS, it was the highest in all groups and there was a statistically significant difference compared with the other four groups. According to the ARS results, on the 4th and the 7th days after osteogenic induction started, the cells cultured on the G100 and the G150 scaffolds had higher calcium deposition results; on the 10th day, the cells cultured on the G150 and the G200 scaffolds had higher calcium deposition results; however, on the 4th and 10th day, the calcium deposition results of cells on TCPS were still significantly better than that of cells on all the other four groups. In this experiment, we successfully fabricated three-dimensional printed scaffolds with acceptable dimensional accuracy, and we discovered the optimum gap width for the proliferation and osteogenic differentiation of MG-63 osteoblast-like cells when they were cultured on scaffolds with narrow groove-like configuration for a short-term culture days (7 days for cell proliferation and 10 days for osteogenic differentiation) is between 142.5±20.0 μm. (The scaffold type which resulted in the best osteoblast-like cells’ proliferation performance within 7 days and the best osteoblast-like cells’ osteogenic differentiation performance within 10 days is G150 scaffolds in our experiment.) We hope that our experimental results can attribute to the advancement of the field of bone tissue engineering. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:39:48Z (GMT). No. of bitstreams: 1 ntu-108-R04422016-1.pdf: 6727906 bytes, checksum: 4fc91fc6f3536f9b144174a7048d14eb (MD5) Previous issue date: 2019 | en |
| dc.description.provenance | Item withdrawn by admin ntu (admin@lib.ntu.edu.tw) on 2022-05-18T03:22:11Z Item was in collections: 臨床牙醫學研究所 (ID: 4d343cdd-89a9-448d-b26d-b213667df1fe) No. of bitstreams: 1 ntu-108-1.pdf: 6727906 bytes, checksum: 4fc91fc6f3536f9b144174a7048d14eb (MD5) | en |
| dc.description.provenance | Item reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-26T01:34:17Z Item was in collections: 臨床牙醫學研究所 (ID: 4d343cdd-89a9-448d-b26d-b213667df1fe) No. of bitstreams: 1 ntu-108-1.pdf: 6727906 bytes, checksum: 4fc91fc6f3536f9b144174a7048d14eb (MD5) | en |
| dc.description.provenance | Item withdrawn by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-26T01:34:34Z Item was in collections: 臨床牙醫學研究所 (ID: 4d343cdd-89a9-448d-b26d-b213667df1fe) No. of bitstreams: 1 ntu-108-1.pdf: 6727906 bytes, checksum: 4fc91fc6f3536f9b144174a7048d14eb (MD5) | en |
| dc.description.provenance | Item reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-17T03:35:14Z Item was in collections: 臨床牙醫學研究所 (ID: 4d343cdd-89a9-448d-b26d-b213667df1fe) No. of bitstreams: 1 ntu-108-1.pdf: 6727906 bytes, checksum: 4fc91fc6f3536f9b144174a7048d14eb (MD5) | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目錄 vii 圖目錄 xi 表目錄 xiii 第一章 緒論 1 1-1骨缺損成因及目前重建的方式 1 第二章 文獻回顧 2 2-1組織工程簡介 2 2-2 常用於骨組織工程的研究中的細胞種類 3 2-3 骨組織工程支架所需具備的特性 4 2-4 骨組織工程支架常用材料的種類 6 2-5 骨組織工程支架的各種製作方式 7 2-5-1 傳統製程的製作方式 7 2-5-2 新興製程的製作方式 8 2-6各種三維列印技術其原理與應用 8 2-6-1 Three Dimensional Printing (3DP) 9 2-6-2 熔融沉積成型式三維列印(Fused deposition modeling, FDM) 9 2-6-3 Stereolithography (SLA) 9 2-6-4 Selective laser sintering/melting (SLS) 10 2-6-5 3D Plotting/Direct-write bioprinting 10 2-7 最適合骨細胞生長的支架孔徑 11 2-8 聚乳酸(Poly(lactic acid) or Polylactide, PLA) 11 2-9 聚乳酸的降解機制 12 2-10 研究動機與目的和實驗流程規劃 12 第三章 材料與方法 14 3-1 實驗設備 14 3-2 實驗原料、藥品與試劑 16 3-3支架製作流程簡介 17 3-4三維列印聚乳酸支架之尺寸精度分析 19 3-4-1 利用倒立式相位差光學顯微鏡觀察、拍照並分析支架尺寸精度 19 3-4-2 利用掃描式電子顯微鏡(SEM)觀察各組支架表面型態 19 3-5 三維列印聚乳酸支架的靜態降解研究 20 3-5-1 支架重量損失量測 20 3-5-2 pH值變化的量測 21 3-6 以示差掃描量熱法(DSC)分析聚乳酸材料於三維列印前後的熱性質變化 21 3-7 聚乳酸材料於三維列印前後之分子量變化及分子量分布的變化之探討 22 3-8 對培養於具有不同預設相鄰支柱彼此間隙寬度值的聚乳酸支架上之MG-63類骨細胞進行生長和分化行為分析 23 3-8-1 細胞培養(cell culture) 23 3-8-2 支架之準備和消毒 24 3-8-3 細胞種植(cell seeding) 24 3-8-4 細胞生長行為分析 25 3-8-4-1 MTT細胞生長試驗 (MTT assay) 25 3-8-4-2 SEM標本製備和以SEM觀察細胞於支架上的生長情形 26 3-8-5 細胞分化行為分析 27 3-8-5-1 用於誘導MG-63類骨細胞成骨分化之礦化培養液製備 27 3-8-5-2 茜素紅S染色及其定量分析試驗 (Alizarin Red S staining and its quantification assay) 27 3-9 統計分析 28 第四章 結果 29 4-1對三組具有不同預設間隙寬度值的三維列印聚乳酸支架進行尺寸精度分析 29 4-2三維列印聚乳酸支架之體外靜態降解測試(in vitro static degradation test) 29 4-2-1 支架失重率 29 4-2-2浸泡支架之PBS溶液之pH值變化 30 4-3示差掃描量熱儀(DSC)分析於三維列印前與列印後聚乳酸材料的熱性質變化 30 4-4聚乳酸材料於列印前與列印後之分子量及分子量分布之變化 30 4-5 對培養於具有不同預設間隙寬度值的各組聚乳酸支架上之MG-63類骨細胞進行生長和分化行為分析 31 4-5-1 MTT細胞活性測試 31 4-5-2以SEM觀察支架上細胞型態和生長情形 32 4-5-3 茜素紅S染色及其定量分析試驗 (Alizarin Red S staining and its quantification assay) 33 第五章 討論 36 5-1三維列印聚乳酸支架尺寸精度探討 36 5-2 熔融沉積成型式三維列印聚乳酸支架之體外靜態降解現象探討 36 5-3經過熔融沉積成型式三維列印製程以後聚乳酸材料的熱性質變化探討 37 5-4 聚乳酸材料經以熔融沉積成型式三維列印前後之分子量以及分子量分布之變化 37 5-5對培養於具有不同間隙寬度值的各組三維列印聚乳酸支架上之MG-63類骨細胞的生長行為之探討 38 5-6對培養於具有不同間隙寬度值的各組三維列印聚乳酸支架上之MG-63類骨細胞的分化行為之探討 38 第六章 結論 40 第七章 未來研究方向 42 第八章 參考文獻 43 附圖 47 附表 75 | |
| dc.language.iso | zh-TW | |
| dc.title | 熔融沉積成型之三維列印聚乳酸支架結構對於類骨細胞生長與礦化之影響 | zh_TW |
| dc.title | Effects of Fused Deposition Modeling 3D-Printed Polylactic Acid Scaffolds with Different Structures on the Growth and Mineralization of Osteoblast-like Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳羿貞,周涵怡 | |
| dc.subject.keyword | 骨組織工程,熔融沉積成型,聚乳酸,支架結構,MG-63類骨細胞,細胞增生,成骨分化, | zh_TW |
| dc.subject.keyword | Bone tissue engineering,Fused deposition modeling,Polylactic acid,Scaffold architecture,MG-63 osteoblast-like cells,cell proliferation,osteogenic differentiation, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU201903812 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-29 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 6.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
