請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71439完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱風(Kai-Feng Chen) | |
| dc.contributor.author | Wen-Liang Huang | en |
| dc.contributor.author | 黃文亮 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:00:45Z | - |
| dc.date.available | 2021-02-22 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-11-30 | |
| dc.identifier.citation | The CMS Collaboration. The CMS experiment at the CERN LHC. Journal of In strumentation, 3(08):S08004–S08004, aug 2008. P. Paolucci et al. CMS Resistive Plate Chamber overview, from the present system to the upgrade phase I. PoS, RPC2012:004, 2012. Christophe Ochando. HGCAL: A HighGranularity Calorimeter for the endcaps of CMS at HLLHC. J. Phys. : Conf. Ser., 928(1):012025. 4 p, 2017. CMS Collaboration. The Phase2 Upgrade of the CMS Endcap Calorimeter. Tech nical Report CERNLHCC2017023. CMSTDR019, CERN, Geneva, Nov 2017. Technical Design Report of the endcap calorimeter for the Phase2 upgrade of the CMS experiment, in view of the HLLHC run. R. Rusack. A high granularity calorimeter for the cms endcaps at the hllhc. In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), pages 1–6, 2016. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli, O. Cohen, A. Christov, D. Dannheim, K. Danielowski, S. HenrotVersille, M. Jachowski, K. Kraszewski, A. Krasznahorkay Jr., M. Kruk, Y. Mahalalel, R. Ospanov, X. Prudent, A. Robert, D. Schouten, F. Tegenfeldt, A. Voigt, K. Voss, M. Wolter, and A. Zemla. Tmva toolkit for multivariate data analysis, 2007. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015. by Rende Steerenberg and Anais Schaeffer. LHC Report: The LHC is full! May 2018. ”the lhc schematic”. https://lhc-machine-outreach.web.cern.ch/lhc_in_ pictures.htm. Fisher Linear Discriminant Analysis. Max welling. 10 King’s College Road Toronto, M5S 3G5 Canada. B.P. Roe, HaiJun Yang, and Ji Zhu. Boosted decision trees, a powerful event classi fier. In Statistical Problems in Particle Physics, Astrophysics and Cosmology, pages 139–142, 9 2005. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and TieYan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 3146–3154. Curran Associates, Inc., 2017. Kolmogorov–Smirnov Test, pages 283–287. Springer New York, New York, NY, 2008. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vi jay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Largescale machine learning on heterogeneous distributed systems, 2015. Shunping Ji, Zhang Chi, Anjian Xu, and Yulin Duan. 3d convolutional neural net works for crop classification with multitemporal remote sensing images. Remote Sensing, 10:75, 01 2018. Pekka Sinervo. Definition and treatment of systematic uncertainties in high energy physics and astrophysics. Statistical Problems in Particle Physics, Astrophysics, and Cosmology, 01 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71439 | - |
| dc.description.abstract | 為了大型強子對撞機中原本已經很高的光度更增加十倍以上來讓對撞 且發散的粒子能夠更多被留下來,高粒度量熱器 (HGCAL) 就是在緊湊緲子 螺旋 (CMS) 中裡第二階段中想要製作出新的測量器。此次實驗中只討論高 粒度量熱器中的電子量熱器 (EE)。為了驗證在光束測量中產生的資料和模 擬粒子可以視為他們的能量為變數,28 層的能量可以視為 28 個變數,而這 28 個變數來利用傳統的機器學習和最近熱門中深度學習裡的卷積神經網路 (Convolution Neural Network) 來確認兩個粒子他們分離的機率,以及資料跟 模型他們的相似程度。比較在機器學習和卷積神經網路演算法訓練結果,後 者為了分離電子跟 π 介子其準確率比前者還更大。在之後可以在卷積神經網 路程式館裡建立專有的六角形模組,並比較和之前的準確率來確認六角形模 組訓練是不是真的比較好 | zh_TW |
| dc.description.abstract | Large Hadron Collider(LHC) is processing to the High Luminosity phase, it will deliver 10 times more integrated luminosity than now. HighGranularity Calorime ter(HGCAL) is the chosen technology by the Compact Muon Solenoid(CMS) ex periment as part of the phase 2 upgrading program.This experiment will focus on the electromagnetic calorimter(EE)region. The already generated data and corresponded simulation can look upon their energies as the variables in each layer of electromag netic calorimter.Then using machine learning algorithms and Convolution Neural Network(CNN) algorithm to check that the input and output can correspond to each other and their probability of the data and simulation.Comapring the machine learn ing algorithm result to the CNN algorithm result that the latter one can have a higher accuracy to separate e+ and π+ than the before one. Outlook is to construct a hexag onal image module in the CNN library and compare the accuracy is higher than the CNN in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:00:45Z (GMT). No. of bitstreams: 1 U0001-2511202017534500.pdf: 9539610 bytes, checksum: 854d62ab629c600d19eef9ce6b718b35 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 1 Introduction 1.1 Introduction of HGCALHardware.................. 1 1.2 Beam Tests Training by Machine Learning and Deep Learning . . . 1 1.2.1 ConstrictedNewVariables................... 2 1.2.2 Discriminant Signal and Background by Machine Learning..........3 1.2.3 Deep Learning with NeuralNetwork. . . . . . . . . . . . .4 2 Experimental Apparatus 2.1 LargeHadronCollider ........................... 6 2.2 CompactMuonSolenoidDetector ..................... 7 2.2.1 Magnetconfiguration........................ 8 2.2.2 TrackingSystem .......................... 8 2.2.3 ElectromagneticCalorimeter(ECAL) . . . . . . . . . . . . . . . 9 2.2.4 HadronicCalorimeter(HCAL) ................... 9 2.2.5 MuonDetector ........................... 11 2.2.6 TriggerSystem........................... 11 3 Data and Simulation........13 3.1 Single Beam Energy Data ..................... 13 3.2 SingleBeamEnergySimulation ...................... 13 3.3 ContinuousBeamEnergySimulation ................... 14 4 Twenty Eight Layers Variables with Machine Learning 17 4.1 Variable E1/E7................................. 18 4.1.1 Continuous beam testmodel.................... 21 4.1.2 Single beam test Output Distribution................ 26 4.2 Variable E7/E19................................. 29 4.2.1 Continuous beam test model.................... 29 4.2.2 SingleBeamTestOutputDistribution . . . . . . . . . . . . . . . 32 5 Twenty Eight Layer Variables with Convolution Neural Network 35 5.1 Hexagon to Square ............................. 37 5.2 Convolution Neural Network Two Dimension. . . . . . . . . . . . . . 38 5.2.1 Continuous Beam Testmodel ................... 39 5.2.2 SingleBeamTestOutputDistribution . . . . . . . . . . . . . . . 40 5.3 Convolution Neural Network Three Dimension . . . . . . . . . . . . . 43 5.3.1 Continuous Beam Test model ................... 44 5.3.2 SingleBeamTestOutputDistribution ............... 44 6 Systematic Uncertainty 48 7 Result 49 8 Summary 50 A Other Single Beam Test Result in variable E1 53 A.1 E1/E7 variable with 20GeV Single Beam Test................. 53 A.2 E1/E7 variable with 30GeV Single Beam Test................. 54 A.3 E1/E7 variable with 50GeV Single Beam Test................. 56 A.4 E1/E7 variable with 80GeV Single Beam Test................. 58 A.5 E1/E7 variable with 120GeV Single Beam Test................. 59 A.6 E1/E7 variable with 150GeV Single Beam Test................. 60 A.7 E1/E7 variable with 200GeV Single Beam Test................. 61 A.8 E1/E7 variable with 300GeV Single Beam Test................. 62 | |
| dc.language.iso | en | |
| dc.subject | 量能方式 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 量能器 | zh_TW |
| dc.subject | 高能物理 | zh_TW |
| dc.subject | 卷機神經網路 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 能量重建 | zh_TW |
| dc.subject | Convolution neural network | en |
| dc.subject | Calorimeter | en |
| dc.subject | Calorimeter method | en |
| dc.subject | Energy reconstructor | en |
| dc.subject | Machine learning | en |
| dc.subject | Deep learning | en |
| dc.subject | High energy physics | en |
| dc.title | 高粒度量能器測試粒子且利用深度學習來分辨粒子 | zh_TW |
| dc.title | High Granularity Calorimeter(HGCAL)Beam Test Particle Separation with Deep Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂榮祥(Rong-Shyang Lu),徐百嫻(Pai-hsien Jennifer Hsu),裴思達(Stathes Paganis) | |
| dc.subject.keyword | 高能物理,量能器,量能方式,能量重建,機器學習,深度學習,卷機神經網路, | zh_TW |
| dc.subject.keyword | High energy physics,Calorimeter,Calorimeter method,Energy reconstructor,Machine learning,Deep learning,Convolution neural network, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202004357 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-11-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2511202017534500.pdf 未授權公開取用 | 9.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
