Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71433
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳佑宗(You-Tzung Chen) | |
dc.contributor.author | Kuo-Hung Lee | en |
dc.contributor.author | 李國宏 | zh_TW |
dc.date.accessioned | 2021-06-17T06:00:38Z | - |
dc.date.available | 2019-03-05 | |
dc.date.copyright | 2019-03-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-12 | |
dc.identifier.citation | 1. Arias, E.E. and J.C. Walter, Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev, 2007. 21(5): p. 497-518.
2. Branzei, D. and M. Foiani, Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol, 2010. 11(3): p. 208-19. 3. Sclafani, R.A. and T.M. Holzen, Cell cycle regulation of DNA replication. Annu Rev Genet, 2007. 41: p. 237-80. 4. Bell, S.P. and A. Dutta, DNA replication in eukaryotic cells. Annu Rev Biochem, 2002. 71: p. 333-74. 5. Masai, H., et al., Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem, 2010. 79: p. 89-130. 6. Takeda, D.Y. and A. Dutta, DNA replication and progression through S phase. Oncogene, 2005. 24(17): p. 2827-43. 7. Mendez, J. and B. Stillman, Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays, 2003. 25(12): p. 1158-67. 8. Forsburg, S.L., Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev, 2004. 68(1): p. 109-31. 9. Pacek, M. and J.C. Walter, A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J, 2004. 23(18): p. 3667-76. 10. Bochman, M.L. and A. Schwacha, The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev, 2009. 73(4): p. 652-83. 11. Maiorano, D., M. Lutzmann, and M. Mechali, MCM proteins and DNA replication. Curr Opin Cell Biol, 2006. 18(2): p. 130-6. 12. Pacek, M., et al., Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell, 2006. 21(4): p. 581-7. 13. Gambus, A., et al., GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol, 2006. 8(4): p. 358-66. 14. Ricke, R.M. and A.K. Bielinsky, Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell, 2004. 16(2): p. 173-85. 15. Aparicio, O.M., D.M. Weinstein, and S.P. Bell, Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell, 1997. 91(1): p. 59-69. 16. Mimura, S. and H. Takisawa, Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J, 1998. 17(19): p. 5699-707. 17. Takayama, Y., et al., GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev, 2003. 17(9): p. 1153-65. 18. Nyberg, K.A., et al., Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet, 2002. 36: p. 617-56. 19. Osborn, A.J., S.J. Elledge, and L. Zou, Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol, 2002. 12(11): p. 509-16. 20. Sancar, A., et al., Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 2004. 73: p. 39-85. 21. Bartek, J., C. Lukas, and J. Lukas, Checking on DNA damage in S phase. Nat Rev Mol Cell Biol, 2004. 5(10): p. 792-804. 22. Lengronne, A., et al., Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell, 2006. 23(6): p. 787-99. 23. Uhlmann, F. and K. Nasmyth, Cohesion between sister chromatids must be established during DNA replication. Curr Biol, 1998. 8(20): p. 1095-101. 24. Kouprina, N., et al., CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 1992. 12(12): p. 5736-47. 25. Hanna, J.S., et al., Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol, 2001. 21(9): p. 3144-58. 26. Williams, D.R. and J.R. McIntosh, mcl1+, the Schizosaccharomyces pombe homologue of CTF4, is important for chromosome replication, cohesion, and segregation. Eukaryot Cell, 2002. 1(5): p. 758-73. 27. Mayer, M.L., et al., Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell, 2004. 15(4): p. 1736-45. 28. Tsutsui, Y., et al., Genetic and physical interactions between Schizosaccharomyces pombe Mcl1 and Rad2, Dna2 and DNA polymerase alpha: evidence for a multifunctional role of Mcl1 in DNA replication and repair. Curr Genet, 2005. 48(1): p. 34-43. 29. Zhu, W., et al., Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev, 2007. 21(18): p. 2288-99. 30. Yoshizawa-Sugata, N. and H. Masai, Roles of human AND-1 in chromosome transactions in S phase. J Biol Chem, 2009. 284(31): p. 20718-28. 31. Li, Y., et al., The involvement of acidic nucleoplasmic DNA-binding protein (And-1) in the regulation of prereplicative complex (pre-RC) assembly in human cells. J Biol Chem, 2012. 287(51): p. 42469-79. 32. Hsieh, C.L., et al., WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res, 2011. 39(10): p. 4048-62. 33. Hao, J., et al., And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J, 2015. 34(15): p. 2096-110. 34. Li, Y., et al., And-1 is required for homologous recombination repair by regulating DNA end resection. Nucleic Acids Res, 2017. 45(5): p. 2531-2545. 35. Gosnell, J.A. and T.W. Christensen, Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression. BMC Mol Biol, 2011. 12: p. 13. 36. Chen, Z., et al., Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway. Mol Cell Proteomics, 2016. 15(4): p. 1299-308. 37. Petters, R.M. and J.R. Sommer, Transgenic animals as models for human disease. Transgenic Res, 2000. 9(4-5): p. 347-51; discussion 345-6. 38. Russell, W.L., X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol, 1951. 16: p. 327-36. 39. Russell, L.B., et al., Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc Natl Acad Sci U S A, 1989. 86(10): p. 3704-8. 40. Kool, J. and A. Berns, High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer, 2009. 9(6): p. 389-99. 41. Copeland, N.G. and N.A. Jenkins, Harnessing transposons for cancer gene discovery. Nat Rev Cancer, 2010. 10(10): p. 696-706. 42. Griep, A.E., et al., Gene targeting in the mouse. Methods Mol Biol, 2011. 770: p. 293-312. 43. Yu, Y. and A. Bradley, Engineering chromosomal rearrangements in mice. Nat Rev Genet, 2001. 2(10): p. 780-90. 44. Zheng, B., et al., Engineering mouse chromosomes with Cre-loxP: range, efficiency, and somatic applications. Mol Cell Biol, 2000. 20(2): p. 648-55. 45. Cohen-Tannoudji, M. and C. Babinet, Beyond 'knock-out' mice: new perspectives for the programmed modification of the mammalian genome. Mol Hum Reprod, 1998. 4(10): p. 929-38. 46. Capecchi, M.R., Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet, 2005. 6(6): p. 507-12. 47. Gaj, T., C.A. Gersbach, and C.F. Barbas, 3rd, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013. 31(7): p. 397-405. 48. Urnov, F.D., et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005. 435(7042): p. 646-51. 49. Gaj, T., et al., Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods, 2012. 9(8): p. 805-7. 50. Bedell, V.M., et al., In vivo genome editing using a high-efficiency TALEN system. Nature, 2012. 491(7422): p. 114-8. 51. Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013. 8(11): p. 2281-2308. 52. Maddalo, D., et al., In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature, 2014. 516(7531): p. 423-7. 53. Sternberg, S.H., et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014. 507(7490): p. 62-7. 54. Haoyi Wang, H.Y., One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 2013. 55. Deveau, H., J.E. Garneau, and S. Moineau, CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol, 2010. 64: p. 475-93. 56. Garneau, J.E., et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010. 468(7320): p. 67-71. 57. Anders, C., et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014. 513(7519): p. 569-73. 58. Zlotorynski, E., Genome engineering: NHEJ and CRISPR-Cas9 improve gene therapy. Nat Rev Mol Cell Biol, 2016. 18(1): p. 4. 59. Wang, B., et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques, 2015. 59(4): p. 201-2, 204, 206-8. 60. He, X., et al., Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016. 44(9): p. e85. 61. Saleh-Gohari, N. and T. Helleday, Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res, 2004. 32(12): p. 3683-8. 62. Suckale, J., et al., PTBP1 is required for embryonic development before gastrulation. PLoS One, 2011. 6(2): p. e16992. 63. Lim, H.J., et al., Targeted disruption of Mcm10 causes defective embryonic cell proliferation and early embryo lethality. Biochim Biophys Acta, 2011. 1813(10): p. 1777-83. 64. Bermudez, V.P., et al., Influence of the human cohesion establishment factor Ctf4/AND-1 on DNA replication. J Biol Chem, 2010. 285(13): p. 9493-505. 65. Abe, T., et al., AND-1 fork protection function prevents fork resection and is essential for proliferation. Nat Commun, 2018. 9(1): p. 3091. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71433 | - |
dc.description.abstract | WD Repeat and HMG-Box DNA Binding Protein 1(WDHD1)在真核生物中為一個演化上保守的蛋白,先前文獻研究指出,WDHD1在DNA複製起始(initiation)及延長(elongation)機制上扮演了重要的角色,WDHD1就如同一個中心樞紐的鷹架,幫助其他與DNA複製相關複合體的形成(如:pre-replication complex以及replication protein complex),並增加DNA複製的效率,藉此來維持整個基因體的完整性。演化上,脊椎動物的WDHD1相較於非脊椎動物,除了都有WD40及SepB功能區域(functional domain)之外,還多了HMG-box 區域。當人類細胞WDHD1缺失時會造成細胞無法成功地完成細胞週期以及造成染色體分離異常。在本篇論文中,我們以CRISPR/Cas9基因修改的技術產生了Wdhd1缺失的小鼠,來研究其於哺乳類動物活體內之功能,同時也將針對HMG-box區域的功能進行探討。目前已產生出攜帶於Wdhd1第一個外顯子有移碼突變(c.13delinsTGAGA)等位基因的小鼠,觀察到帶有該突變之同型合子會死於胚胎發育早期,並且於E7.5到E8.5之間有明顯的生長異常的外觀。Wdhd1 c.13delinsTGAGA同型合子胚胎在著床前階段(pre-implantation stage)顯示出明顯正常的生長,但在E7.5階段則觀察到生長異常的胚胎。進一步的研究則發現,在Wdhd1 c.13delinsTGAGA同型合子胚胎的E7.5階段,細胞增殖率降低並且有細胞凋亡的情形。總而言之,這些發現揭示了Wdhd1對小鼠胚胎發育至關重要,一旦Wdhd1缺失會導致 E7.5-E10.5胚胎生長異常,最終導致了胚胎致死。 | zh_TW |
dc.description.abstract | WD Repeat and HMG-Box DNA Binding Protein 1(WDHD1) is an evolutionary conserved protein in eukaryotes. Previous research indicates that WDHD1 plays a crucial role in initiation and elongation of DNA replication. WDHD1 acts as a hub to help the formation of DNA replication-related complexes (e.g., pre-replication complex and replication protein complex) and it also ensures efficient DNA replication. WDHD1 is required for gnome integrity maintenance. Phylogenetic analysis revealed that, compared to non-vertebrate eukaryotes, vertebrate WDHD1 not only possesses a WD40 domain and a SepB domain but also has an additional HMG-box domain at its C-terminus. WDHD1 deficiency in human cell causes cell cycle delays and abnormal chromosome segregations. In order to study its biological function in mammal in vivo, we use the CRISPR/Cas9 gene editing tool to generate Wdhd1 deficient mice. In addition, we are going to study the HMG-box domain of Wdhd1. A Wdhd1 exon1 frameshift mutation (c.13delinsTGAGA) in the mouse was generated and found that this mutant allele can cause embryonic lethality when it is bred to homozygosity and discovered abnormal phenotype of embryos at the stage of E7.5 and E8.5. Wdhd1 c.13delinsTGAGA homozygous mutant embryos showed apparently normal growth during the pre-implantation stage, but retarded growth at E7.5. Further investigation showed that the cell proliferation ratio decreased and also showed apoptosis signal at E7.5 homozygous mutant embryos. Taken together, these findings revealed that Wdhd1 is essential for mouse embryogenesis. Once Wdhd1 is defective, it causes abnormal growth of the embryo at E7.5-E10.5 and eventually leads to embryonic lethality. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:00:38Z (GMT). No. of bitstreams: 1 ntu-108-R05455004-1.pdf: 3227190 bytes, checksum: beb9fcd559ef4d74c38a43130e7b0466 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書…………………………………………………………………………i
致謝………………………………………………………………………………….......ii 中文摘要………………………………………………………………………………iii Abstract………………………………………………………………………………….iv Contents………………………………………………………………………………….v List of figures…………………………………………………………………………vii List of tables……………………………………………………………………………ix List of supplementary tables……………………………………………………………x 1. Introduction……………………………………………………………………….…1 1.1 The function of WDHD1 in DNA replication ………...……….……..…….…1 1.2 Evolution divergence of WDHD1 in eukaryotes………………..…….………3 1.3 Genetically engineered mouse model for research………………...………..…4 1.4 The tool for gene editing: CRISPR/Cas9 system…………………..…….……5 2. Materials and methods………………………………………………………………8 2.1 SgRNA designs and spCas9 plasmid ……………………………………….…8 2.2 Cell culturing and transfection………….…………………………………..…8 2.3 The analysis of indel efficiency ……………………………………………….9 2.4 Western blotting……………………………………….…………………….10 2.5 Dissection and in vitro culturing of pre-implantation embryos………………11 2.6 Genotyping………….…….…………………………………………………12 2.7 RNA isolation….……………….……………………………………………12 2.8 Reverse transcription and Quantitative real time PCR…………………….…13 2.9 EdU cell proliferation assay.………………………….……………………...14 2.10 Paraffin section of E7.5 mouse embryos…………………..…………………15 2.11 BrdU proliferation assay……………………………………………………..15 2.12 TUNEL assay……….…………………………………………………...…..16 2.13 Generation of Wdhd1 mutant mice………………………………………......17 2.14 Statistical analysis…………………………………………………………...17 3. Results……………………………………………………………………………..19 3.1 SgRNAs targeting Wdhd1 and their functional validation in vitro……..…….19 3.2 The generation of Wdhd1 mutant mice………………………………………20 3.3 Wdhd1 c.13delinsTGAGA homozygotes result in embryonic lethality….......21 3.4 Wdhd1 expression level at different embryonic stages….................................22 3.5 Wdhd1 mutation affected cell proliferation rate and caused cell apoptosis in E7.5 mouse embryos…………………………………………………………23 4. Discussion………………………………………………………………………….25 5. References…………………………………………………………………………29 | |
dc.language.iso | zh-TW | |
dc.title | Wdhd1於小鼠早期胚胎發生之功能性研究 | zh_TW |
dc.title | The functional study of Wdhd1 in mouse early embryogenesis | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張以承(Yi-Cheng Chang),游益興(I-Shing Yu),陳俊銘(Chun-Ming Chen) | |
dc.subject.keyword | DNA複製,細胞增生,Wdhd1,CRISPR/Cas9,小鼠, | zh_TW |
dc.subject.keyword | DNA replication,cell proliferation,Wdhd1,CRISPR/Cas9,mouse, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU201900448 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | zh_TW |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 3.15 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.