Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然(Sung-Jan Lin)
dc.contributor.authorBo-Kuan Wuen
dc.contributor.author吳柏寬zh_TW
dc.date.accessioned2021-06-17T05:59:39Z-
dc.date.available2025-11-30
dc.date.copyright2020-12-09
dc.date.issued2020
dc.date.submitted2020-11-30
dc.identifier.citationAbbasi, S., and Biernaskie, J. (2019). Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycle‐dependent manner. Experimental dermatology 28, 419-424.
Botchkareva, N.V., Ahluwalia, G., and Shander, D. (2006). Apoptosis in the hair follicle. Journal of investigative dermatology 126, 258-264.
Brisken, C. (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. Journal of mammary gland biology and neoplasia 7, 39-48.
Campagnola, P.J., and Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature biotechnology 21, 1356-1360.
Chang, H.-J. (2019). The Role of Basement Membrane in Hair Follicle Regeneration. In Department of Biomedical Engineering
(Taipei city: National Taiwan University), pp. 29.
Chen, C.-L., Huang, W.-Y., Wang, E.H.C., Tai, K.-Y., and Lin, S.-J. (2020). Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. Journal of Biomedical Science 27, 1-11.
Cunha, G.R. (1994). Role of mesenchymal‐epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74, 1030-1044.
Gudipaty, S.A., Lindblom, J., Loftus, P.D., Redd, M.J., Edes, K., Davey, C., Krishnegowda, V., and Rosenblatt, J. (2017). Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118-121.
Heitman, N., Sennett, R., Mok, K.-W., Saxena, N., Srivastava, D., Martino, P., Grisanti, L., Wang, Z., Ma’ayan, A., and Rompolas, P. (2020). Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367, 161-166.
Hendrix, S., Handjiski, B., Peters, E.M., and Paus, R. (2005). A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. Journal of investigative dermatology 125, 42-51.
Hennighausen, L., and Robinson, G.W. (2005). Information networks in the mammary gland. Nature reviews Molecular cell biology 6, 715-725.
Houde, C., Banks, K.G., Coulombe, N., Rasper, D., Grimm, E., Roy, S., Simpson, E.M., and Nicholson, D.W. (2004). Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. Journal of Neuroscience 24, 9977-9984.
Huang, W.-Y., Lai, S.-F., Chiu, H.-Y., Chang, M., Plikus, M.V., Chan, C.-C., Chen, Y.-T., Tsao, P.-N., Yang, T.-L., and Lee, H.-S. (2017). Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer research 77, 6083.
Huang, W.Y., Lin, E.T.Y., Hsu, Y.C., and Lin, S.J. (2019). Anagen hair follicle repair: timely regenerative attempts from plastic extra‐bulge epithelial cells. Experimental dermatology 28, 406-412.
Humphreys, R.C., Krajewska, M., Krnacik, S., Jæger, R., Weiher, H., Krajewski, S., Reed, J.C., and Rosen, J.M. (1996). Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development 122, 4013-4022.
Jahoda, C., Reynolds, A.J., Chaponnier, C., Forester, J.C., and Gabbiani, G. (1991). Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. Journal of cell science 99, 627-636.
König, K. (2000). Multiphoton microscopy in life sciences. Journal of microscopy 200, 83-104.
Kearney, E., Prendergast, P., and Campbell, V. (2008). Mechanisms of strain-mediated mesenchymal stem cell apoptosis. Journal of biomechanical engineering 130.
Kuida, K., Zheng, T.S., Na, S., Kuan, C.-Y., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R.A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368-372.
Lakhani, S.A., Masud, A., Kuida, K., Porter, G.A., Booth, C.J., Mehal, W.Z., Inayat, I., and Flavell, R.A. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847-851.
Müller-Röver, S., Foitzik, K., Paus, R., Handjiski, B., van der Veen, C., Eichmüller, S., McKay, I.A., and Stenn, K.S. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. Journal of investigative dermatology 117, 3-15.
Magerl, M., Tobin, D.J., Müller-Röver, S., Hagen, E., Lindner, G., McKay, I.A., and Paus, R. (2001). Patterns of proliferation and apoptosis during murine hair follicle morphogenesis. Journal of investigative dermatology 116, 947-955.
Matsuo, K., Mori, O., and Hashimoto, T. (1998). Apoptosis in murine hair follicles during catagen regression. Archives of dermatological research 290, 133-136.
McKayed, K.K., Prendergast, P.J., Campbell, V.A., and Gowran, A. (2012). Mesenchymal stem cells: role of mechanical strain in promoting apoptosis and differentiation. In Stem Cells and Cancer Stem Cells, Volume 3 (Springer), pp. 199-206.
Mesa, K.R., Rompolas, P., Zito, G., Myung, P., Sun, T.Y., Brown, S., Gonzalez, D.G., Blagoev, K.B., Haberman, A.M., and Greco, V. (2015). Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522, 94-97.
Miller, M.J., Wei, S.H., Cahalan, M.D., and Parker, I. (2003). Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proceedings of the National Academy of Sciences 100, 2604-2609.
Monks, J., Smith-Steinhart, C., Kruk, E.R., Fadok, V.A., and Henson, P.M. (2008). Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biology of reproduction 78, 586-594.
Morishige, N., Petroll, W.M., Nishida, T., Kenney, M.C., and Jester, J.V. (2006). Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. Journal of Cataract Refractive Surgery 32, 1784-1791.
Ouyang, L., Shi, Z., Zhao, S., Wang, F.T., Zhou, T.T., Liu, B., and Bao, J.K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation 45, 487-498.
Paus, R., Handjiski, B., Czarnetzki, B.M., and Eichmüller, S. (1994). A murine model for inducing and manipulating hair follicle regression (catagen): effects of dexamethasone and cyclosporin A. Journal of investigative dermatology 103, 143-147.
Pineda, C.M., Park, S., Mesa, K.R., Wolfel, M., Gonzalez, D.G., Haberman, A.M., Rompolas, P., and Greco, V. (2015). Intravital imaging of hair follicle regeneration in the mouse. Nature protocols 10, 1116-1130.
Rahmani, W., Abbasi, S., Hagner, A., Raharjo, E., Kumar, R., Hotta, A., Magness, S., Metzger, D., and Biernaskie, J. (2014). Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Developmental cell 31, 543-558.
Rendl, M., Lewis, L., and Fuchs, E. (2005). Molecular dissection of mesenchymal–epithelial interactions in the hair follicle. PLoS Biol 3, e331.
Rompolas, P., Deschene, E.R., Zito, G., Gonzalez, D.G., Saotome, I., Haberman, A.M., and Greco, V. (2012). Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671-675.
Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009). The hair follicle as a dynamic miniorgan. Current Biology 19, R132-R142.
Shwartz, Y., Gonzalez-Celeiro, M., Chen, C.-L., Pasolli, H.A., Sheu, S.-H., Fan, S.M.-Y., Shamsi, F., Assaad, S., Lin, E.T.-Y., and Zhang, B. (2020). Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578-593. e519.
Soma, T., Ogo, M., Suzuki, J., Takahashi, T., and Hibino, T. (1998). Analysis of Apoptotic Cell Death in Human Hair Follicles In Vivo andIn Vitro. Journal of investigative dermatology 111, 948-954.
Stenn, K., and Paus, R. (2001). Controls of hair follicle cycling. Physiological reviews.
Steven, P., Bock, F., Hüttmann, G., and Cursiefen, C. (2011). Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels. PloS one 6, e26253.
Tobin, D.J., Magerl, M., Gunin, A., and Paus, R. (2003). Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations. Paper presented at: Journal of Investigative Dermatology Symposium Proceedings (Elsevier).
Vesela, B., Svandova, E., Berghe, T.V., Tucker, A.S., Vandenabeele, P., and Matalova, E. (2015). Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. Journal of molecular histology 46, 443-455.
Watson, C.J. (2006). Post-lactational mammary gland regression: molecular basis and implications for breast cancer. Expert reviews in molecular medicine 8, 1.
Weigelin, B., Bakker, G.-J., and Friedl, P. (2016). Third harmonic generation microscopy of cells and tissue organization. Journal of Cell Science 129, 245-255.
Wendling, O., Bornert, J.M., Chambon, P., and Metzger, D. (2009). Efficient temporally‐controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis 47, 14-18.
Williams, J.M., and Daniel, C.W. (1983). Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Developmental biology 97, 274-290.
Wright, S.J., Centonze, V.E., Stricker, S.A., DeVries, P.J., Paddock, S.W., and Schatten, G. (1993). Introduction to confocal microscopy and three-dimensional reconstruction. In Methods in cell biology (Elsevier), pp. 1-45.
Wu, Y.-F., Tan, H.-Y., and Lin, S.-J. (2019). Long-Term Intravital Imaging of the Cornea, Skin, and Hair Follicle by Multiphoton Microscope.
Xu, C., and Wise, F. (2013). Recent advances in fibre lasers for nonlinear microscopy. Nature photonics 7, 875-882.
Yew, E., Rowlands, C., and So, P.T. (2014). Application of multiphoton microscopy in dermatological studies: a mini-review. Journal of innovative optical health sciences 7, 1330010.
Zheng, T.S., Hunot, S., Kuida, K., Momoi, T., Srinivasan, A., Nicholson, D.W., Lazebnik, Y., and Flavell, R.A. (2000). Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature medicine 6, 1241-1247.
Zheng, T.S., Schlosser, S.F., Dao, T., Hingorani, R., Crispe, I.N., Boyer, J.L., and Flavell, R.A. (1998). Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proceedings of the National Academy of Sciences 95, 13618-13623.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71372-
dc.description.abstract上皮-間質幹細胞的相互作用在形態發生(morphogenesis)過程中扮演重要的腳色,例如哺乳動物中的乳腺和毛囊。毛囊是一個立體微器官並且透過上皮-間質幹細胞的相互作用不斷經歷毛囊生長週期。毛囊自出生經由morphogenesis形成毛囊,經歷退化期、休止期、生長期不斷循環。細胞凋亡有助於毛囊消退;然而,早期退化期的細胞動態及細胞分裂仍尚未明瞭。
本次實驗利用組織學分析、免疫螢光染色及活體實時成像監測說明退化期的毛囊結構及細胞動態。利用蜜蠟除毛促使毛囊一致性地進入生長期,並紀錄除毛後第17~23天基底膜(basement membrane)、毛根鞘纖維(dermal sheath)、外根鞘(ORS)細胞的3D立體結構變化。退化期早期(第16~18天)發現一部份毛根鞘纖維細胞死亡、外根鞘細胞開始向上移動。退化期中期(第19~22天) 發現有大量的外根鞘細胞凋亡、基底膜的不完整性、毛根鞘纖維逐漸縮短並在真皮乳突(dermal papilla)的後方形成萎縮的構造。另外發現在退化的過程中細胞分裂發生頻率遠高於Caspase-3誘導的細胞凋亡。
我的研究結果表明,退化期中期大量Caspase-3誘導的細胞凋亡事件發生在近端上皮鏈中。此外Caspase-3誘導的細胞凋亡事件不是觸發毛囊消退的主要因素。
zh_TW
dc.description.abstractEpithelial-mesenchymal stem cell interactions are characterized as an important role in several organs during morphogenesis. In mammals, mammary glands and hair follicles (HF) are the mini-organ which cycled involution with epithelial-mesenchymal stem cell interactions. After the HFs morphogenesis, the HFs transform from regression (catagen phase), via the telogen, to the anagen, continuous cycling. Cell death contributes to HF regression; however, what is the cell dynamics in the early phase of regression remains unclear.
In this study, I used histological analysis, immunofluorescent staining, and live imaging to clarify the structure and cell dynamics in HF regression. HF entered the anagen phase synchronously by waxing. Also, long-term real-time imaging was used to monitor the behavior and structural changes in epithelial cells during HF regression.
I demonstrated the 3D structure changing of the HF dermal sheath (HFDS) and the HF basement membrane (HFBM) during regression (from 17 days to 23 days post-waxing). The HFDS was shown that only wrapped the half down of the HF. During the early stage of regression (from 16 days to 18 days post-waxing), few HFDS cells death and meanwhile the epithelial cells began to move. During mid-catagen (from 19 days to 22 days post-waxing), the HFDS involuted the trailing structure behind the DP and the massive apoptotic events were contributed by ORS cells. Surprisingly, the proliferation events much more than the caspase-3 mediate apoptotic events during HF regression.
My result suggests that the massive caspase-3 mediate apoptotic events occurred at the proximal epithelial strand which was the thinnest diameter of the dermal sheath. Furthermore, the Caspase-3 mediate apoptotic events were not the main factor that triggered the HF regression.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:39Z (GMT). No. of bitstreams: 1
U0001-2811202019574600.pdf: 3042737 bytes, checksum: f875f265fbb617d678c3fd8b97e60ee0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Introduction 1
The structure of hair follicle 1
The Organ involution 2
The optical equipment and intravital imaging 4
Specific aim 5
Materials and Methods 7
Mice 7
Anesthesia and synchronization of the HF cycle 7
Sample collection 8
Histological analysis (H E staining) 8
Western blot analysis 8
Immunofluorescent staining 9
The rapid imaging for whole-mount samples 10
The manual hair type counting 10
Animal prepares for live imaging 10
Intravital imaging (platform by multi-photon microscope) 11
Imaging processing 12
3D reconstruction 12
Results 14
Established the stabilize animal model of the synchronized HFs cycle by waxing 14
The extreme gap between cell proliferation and cell death during HF regression. 16
The structure changing of HFDS and HFBM during HF regression 21
No significant difference in HF cycle between wild type and caspase 3 deficient mice during regression 23
The maximum upward migration of ORS cells occurred at post-waxing 18 days in HF regression 25
Discussion 28
References 31
dc.language.isoen
dc.subject外根鞘細胞zh_TW
dc.subject毛囊zh_TW
dc.subject細胞凋亡zh_TW
dc.subject細胞遷移zh_TW
dc.subject真皮鞘zh_TW
dc.subject基底膜zh_TW
dc.subjectbasement membraneen
dc.subjectapoptosisen
dc.subjecthair follicleen
dc.subjectdermal sheathen
dc.subjectouter root sheathen
dc.title探討毛囊退化期中毛囊結構變化及細胞動態zh_TW
dc.titleProbing Structural Changes and Cell Dynamics in hair follicle Catagenen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡沛學(Pei-Shiue Tsai),蔡素宜(Su-Yi Tsai)
dc.subject.keyword毛囊,細胞凋亡,細胞遷移,真皮鞘,基底膜,外根鞘細胞,zh_TW
dc.subject.keywordhair follicle,apoptosis,dermal sheath,basement membrane,outer root sheath,en
dc.relation.page36
dc.identifier.doi10.6342/NTU202004371
dc.rights.note有償授權
dc.date.accepted2020-12-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2811202019574600.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved