請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71369完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
| dc.contributor.author | Furn-Wei Lin | en |
| dc.contributor.author | 林凡暐 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:34Z | - |
| dc.date.available | 2021-02-19 | |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-13 | |
| dc.identifier.citation | 王利軍、李家承、劉允芬、劉琪瑾、黃衛東、石玉林. 2003. 高溫乾旱脅迫下水楊酸和鈣對柑橘光合作用和葉綠素螢光的影響. 中國農學通報 19:185-189.
王建林、于贵瑞、房全孝、齐华、王秋凤. 2007. 作物水分利用效率的制约因素与调节. 作物杂志 2:9-11. 刘秀秀、冯小亮、吕东波. 2017. 生物刺激素在农业中的应用现状及发展前景. 14:88-89. 吳宜昭、陳永明、朱容練. 2010. 臺灣氣候變遷趨勢. 國研科技:40-46. 童慶斌、國家災害防救科技中心、李培芬、林幸助、李明旭、盧虎生、蘇慧貞、張靜貞、詹士樑、許泰文、李河清. 臺灣氣候變遷科學報告 2017-衝擊與調適面向. 國家災害防救科技中心. 臺北. 臺灣. 經濟部水利署. 2015. 水資源運用實況. ≤https://www.wra.gov.tw/media/19707/f-temp-attachment-781710172871.pdf>. 蔡焕杰、康绍忠. 2000. 作物调亏灌溉的适宜时间与调亏程度的研究. 农业工程学报 16:24-27. 鄭友誠. 2016. 氣候變遷下農業灌溉水資源調適因應策略. 農政與農情 285:10-15. Abdel, C.G. 2005. Water relations in lettuce (Lactuca sativa L. Var longiflia). Mesopotamia J. Agr. 33:2-7. Agboma, P., M. Jones, P. Peltonen‐Sainio, H. Rita, and E. Pehu. 1997a. Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. J. Agron. Crop Sci. 178:29-37. Agboma, P., T. Sinclair, K. Jokinen, P. Peltonen-Sainio, and E. Pehu. 1997b. An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field Crops Res. 54:51-64. Agrawal, G.K., R. Rakwal, S. Tamogami, M. Yonekura, A. Kubo, and H. Saji. 2002. chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol. Biochem. 40:1061-1069. Ahmad, Z., S. Anjum, E.A. Waraich, M.A. Ayub, T. Ahmad, R.M.S. Tariq, R. Ahmad, and M.A. Iqbal. 2018. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J. Plant Nutr. 41:1734-1743. Ashraf, M. and M. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Expt. Bot. 59:206-216. Bélair, G. and N. Tremblay. 1995. The influence of chitin-urea amendments applied to an organic soil on a Meloidogyne hapla population and on the growth of greenhouse tomato. Phytoprotection 76:75-80. Barka, E.A., P. Eullaffroy, C. Clément, and G. Vernet. 2004. chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rpt. 22:608-614. Bautista-Baños, S., A.N. Hernandez-Lauzardo, M.G. Velazquez-Del Valle, M. Hernández-López, E.A. Barka, E. Bosquez-Molina, and C. Wilson. 2006. chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection 25:108-118. Billard, V., P. Etienne, L. Jannin, M. Garnica, F. Cruz, J.-M. Garcia-Mina, J.-C. Yvin, and A. Ourry. 2014. Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J. Plant Growth Regulat. 33:305-316. Blum, A. and G.F. Arkin. 1984. Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Res. 9:131-142. Bolger, T. and N. Turner. 1998. Transpiration efficiency of three Mediterranean annual pasture species and wheat. Oecologia 115:32-38. Cabrera, J., G. Wégria, R. Onderwater, G. González, M. Nápoles, A. Falcón-Rodríguez, D. Costales, H. Rogers, E. Diosdado, and S. González. 2012. Practical use of oligosaccharins in agriculture. Acta Hort. 1009:195-212. Calvo, P., L. Nelson, and J.W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383:3-41. Chai, Q., Y. Gan, C. Zhao, H.-L. Xu, R.M. Waskom, Y. Niu, and K.H. Siddique. 2016. regulated deficit irrigation for crop production under drought stress. A review. Agrono. Sustainable Dev. 36:3. Chen, T.H. and N. Murata. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion Plant Biol. 5:250-257. Chen, T.H. and N. Murata. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13:499-505. Chen, T.H. and N. Murata. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34:1-20. Clifton-Brown, J. and I. Lewandowski. 2000. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann. Bot. 86:191-200. Cui, N., T. Du, S. Kang, F. Li, X. Hu, M. Wang, and Z. Li. 2009. Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree. Agr. Water Mgt. 96:1615-1622. Cuin, T.A. and S. Shabala. 2007. Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ. 30:875-885. Dai, A. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2:45-65. de Lima, R.S.N., F.A.M.M. de Assis Figueiredo, A.O. Martins, B.C.d.S. de Deus, T.M. Ferraz, M.d.M.d.A. Gomes, E.F. de Sousa, D.M. Glenn, and E. Campostrini. 2015. Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Scientia Hort. 183:13-22. Dobbelaere, S., A. Croonenborghs, A. Thys, A.V. Broek, and J. Vanderleyden. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153-162. Du Jardin, P. 2012. The science of plant biostimulants–a bibliographic analysis. Ad hoc study report. European Commission. du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Hort. 196:3-14. EBIC. 2013. Economic overview of the biostimulants sector in Europe. European biostimulants Ind. Council ≤http://www.biostimulants.eu/2013/04/2013- overview-of-the-european-biostimulants-market>. Egea, G., I.C. Dodd, M.M. González-Real, R. Domingo, and A. Baille. 2011. Partial rootzone drying improves almond tree leaf-level water use efficiency and afternoon water status compared with regulated deficit irrigation. Functional Plant Biol. 38:372-385. Einset, J., E. Nielsen, E.L. Connolly, A. Bones, T. Sparstad, P. Winge, and J.K. Zhu. 2007. Membrane‐trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiologia Plant. 130:511-518. El Hadrami, A., L.R. Adam, I. El Hadrami, and F. Daayf. 2010. chitosan in plant protection. Marine Drugs 8:968-987. Ertani, A., M. Schiavon, A. Altissimo, C. Franceschi, and S. Nardi. 2011. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil Sci. 174:496-503. Ertani, A., M. Schiavon, A. Muscolo, and S. Nardi. 2013. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 364:145-158. Farquhar, G.D., J.R. Ehleringer, and K.T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:503-537. Fereres, E. and M.A. Soriano. 2006. Deficit irrigation for reducing agricultural water use. J. Expt. Bot. 58:147-159. Fischer, R.A. and N.C. Turner. 1978. Plant productivity in the arid and semiarid zones. Ann. Rev. Plant Physiol. 29:277-317. García-Tejero, I., J. Jiménez-Bocanegra, G. Martínez, R. Romero, V. Durán-Zuazo, and J. Muriel-Fernández. 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agr. Water Mgt. 97:614-622. Garcı́a-Mata, C. and L. Lamattina. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126:1196-1204. Gelly, M., I. Recasens, J. Girona, M. Mata, A. Arbones, J. Rufat, and J. Marsal. 2004. Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage. J. Sci. Food Agr. 84:561-568. Ghannam, A., A. Abbas, H. Alek, Z. Al-Waari, and M. Al-Ktaifani. 2013. Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol. Mol. Plant Pathol. 84:19-27. Goswami, B.N., V. Venugopal, D. Sengupta, M. Madhusoodanan, and P.K. Xavier. 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314:1442-1445. Gozzo, F. and F. Faoro. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agr. Food Chem. 61:12473-12491. Hadwiger, L.A. 2013. Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci. 208:42-49. Hamza, B.B. and A. Suggars. 2001. biostimulants : myths and realities. TurfGrass Trends 8:6-10. Harada, J., S. Arima, H. Shibayama, and R. Kabashima. 1995. Plant growth promotion effects of chitosan: effects of chitosan application on growth and seed yield of soyabeans. Marine Highland Biosci. Center Rep. 2:15-19. Herve, J. 1994. Biostimulant, a new concept for the future and prospects offered by chemical synthesis and biotechnologies. Comptes Rendus de l'Academie d'Agriculture de France (France) 80:91-102. Hirano, S. 1988. The activation of plant cells and their self-defense function against pathogens in connection with chitosan (in Japanese with English summary). J. Agr. Chem. Soc. Jpn. 62:1238-1240. Huang, J., M. Gu, Z. Lai, B. Fan, K. Shi, Y.-H. Zhou, J.-Q. Yu, and Z. Chen. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development and response to environmental stress. Plant Physiol. 153:1526-1538. Iriti, M., V. Picchi, M. Rossoni, S. Gomarasca, N. Ludwig, M. Gargano, and F. Faoro. 2009. chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Expt. Bot. 66:493-500. Jagendorf, A.T. and T. Takabe. 2001. Inducers of glycinebetaine synthesis in barley. Plant Physiol. 127:1827-1835. Jannin, L., M. Arkoun, A. Ourry, P. Laîné, D. Goux, M. Garnica, M. Fuentes, S.S. Francisco, R. Baigorri, F. Cruz, F. Houdusse, J.M. Garcia-Mina, J.C. Yvin, and P. Etienne. 2012. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 359:297-319. Jindo, K., S.A. Martim, E.C. Navarro, F. Pérez-Alfocea, T. Hernandez, C. Garcia, N.O. Aguiar, and L.P. Canellas. 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209-220. Katerji, N. and M. Mastrorilli. 2014. water use efficiency of Cultivated Crops. Wiley, Chichester, UK. Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J. Plant Physiol. 20:1-9. Khan, W., B. Prithiviraj, and D. Smith. 2002. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40:621-624. Khan, W., U.P. Rayirath, S. Subramanian, M.N. Jithesh, P. Rayorath, D.M. Hodges, A.T. Critchley, J.S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regulat. 28:386-399. Li, C., X. Zhou, J. Sun, H. Wang, and Y. Gao. 2014. Dynamics of root water uptake and water use efficiency under alternate partial root-zone irrigation. Desalination Water Treatment 52:2805-2810. Mäkelä, P., P. Peltonen-Sainio, K. Jokinen, E. Pehu, H. Setälä, R. Hinkkanen, and S. Somersalo. 1996. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci. 121:221-230. Mitchell, P.D., B. Van de Ende, P. Jerie, and D. Chalmers. 1989. Responses of 'Bartlett' pear to withholding irrigation, regulated deficit irrigation, and tree spacing. J. American Soc. Hort. Sci. 114:15-19. Miyashita, K., S. Tanakamaru, T. Maitani, and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Expt. Bot. 53:205-214. Mondal, M.M.A., M.A. Malek, A.B. Puteh, M.R. Ismail, M. Ashrafuzzaman, and L. Naher. 2012. Effect of foliar application of chitosan on growth and yield in okra. Austral. J. Crop Sci. 6:918-921. Nawaz, K. and M. Ashraf. 2010. Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J. Agron. Crop Sci. 196:28-37. Nezami, A., H.R. Khazaei, Z.B. Rezazadeh, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104. Ohta, K., A. Taniguchi, N. Konishi, and T. Hosoki. 1999. chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience 34:233-234. Parađiković, N., T. Vinković, I. Vinković Vrček, I. Žuntar, M. Bojić, and M. Medić‐Šarić. 2011. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agr. 91:2146-2152. Rathore, S.S., D.R. Chaudhary, G.N. Boricha, and A. Ghosh. 2009. Effect of seaweed extract on the growth , yield and nutrient uptake of soybean ( Glycine max ) under rainfed conditions. South African J. Bot. 75:351-355. Rayorath, P., W. Khan, R. Palanisamy, S.L. Mackinnon, R. Stefanova, S.D. Hankins, A.T. Critchley, and B. Prithiviraj. 2008. Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J. Plant Growth Regulat. 27:370-379. Rhodes, D.F. and A.D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Biol. 44:357-384. Rinaudo, M. 2006. chitin and chitosan: properties and applications. Prog. Polymer Sci. 31:603-632. Ruiz-Lozano, J.M., M. Gómez, and R. Azcón. 1995. Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Sci. 110:37-44. Shams, M., E. Yildirim, M. Ekinci, M. Turan, A. Dursun, F. Parlakova, and R. Kul. 2016. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hort. Environ. Biotechnol. 57:225-231. Shao, G.C., Z.Y. Zhang, N. Liu, S.E. Yu, and W.G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Scientia Hort. 119:11-16. Sharp, R. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757-793. Shekhar, S.H.S., G. Lyons, C. McRoberts, D. McCall, E. Carmichael, F. Andrews, and R. McCormack. 2012. Brown seaweed species from Strangford Lough: compositional analyses of seaweed species and biostimulant formulations by rapid instrumental methods. J. Appl. Phycol. 24:1141-1157. Sierras, N., A. Botta, L. Staasing, M. Martinez, and R. Bru. 2015. Understanding the effect of amino acids based biostimulant by an enantiomeric analysis of their active principles and a proteomic profiling approach. Acta Hort. 1148:93-100. Stadnik, M.J. and M.B.D. Freitas. 2014. Algal polysaccharides as source of plant resistance inducers. Trop. Plant Pathol. 39:111-118. Takabe, T., V. Rai, and T. Hibino. 2006. Metabolic engineering of glycinebetaine, p. 137-151. In: A. Rai and T. Takabe (eds.). Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer. Dordrecht, The Netherlands. Takahashi, S. and N. Murata. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13:178-182. Trotel-Aziz, P., M. Couderchet, G. Vernet, and A. Aziz. 2006. chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. European J. Plant Pathol. 114:405-413. Tsugita, T. 1993. The application of chitin/chitosan for agriculture. Proc. Spec. Sess. 7th Symp. chitin chitosan p. 21-22. Van Hooijdonk, B., K. Dorji, and M. Behboudian. 2004. Responses of ‘Pacific Rose’™ apple to partial rootzone drying and to deficit irrigation. European J. Hort. Sci. 69:104-110. Vijayanand, N., S.S. Ramya, and S. Rathinavel. 2014. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pacific J. Reproduction 3:150-155. Wang, Y., F. Liu, M.N. Andersen, and C.R. Jensen. 2010. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Functional Plant Biol. 37:175-182. Webber, H., C. Madramootoo, M. Bourgault, M. Horst, G. Stulina, and D. Smith. 2006. Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation. Agr. Water Mgt. 86:259-268. Xie, K., X.-X. Wang, R. Zhang, X. Gong, S. Zhang, V. Mares, C. Gavilán, A. Posadas, and R. Quiroz. 2012. Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Scientia Hort. 134:20-25. Xing, W. and C. Rajashekar. 1999a. Alleviation of water stress in beans by exogenous glycine betaine. Plant Sci. 148:185-192. Xing, W. and C.B. Rajashekar. 1999b. Alleviation of water stress in beans by exogenous glycine betaine. Plant Sci. 148:185-195. Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin, and P.H. Brown. 2017. biostimulants in plant science: a global perspective. Frontiers Plant Sci. 7:6-10. Yamada, N., W. Promden, K. Yamane, H. Tamagake, T. Hibino, Y. Tanaka, and T. Takabe. 2009. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions. J. Plant Physiol. 166:2058-2070. Yang, X. and C. Lu. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiologia Plant. 124:343-352. Yin, H., X. Zhao, and Y. Du. 2010. Oligochitosan: a plant diseases vaccine—a review. Carbohydrate Polymers 82:1-8. Yu, L.-X., M. Djebrouni, H. Chamberland, J.G. Lafontaine, and Z. Tabaeizadeh. 1998. chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. J. Plant Physiol. 153:745-753. Zhu, Y., C. Taylor, K. Sommer, K. Wilkinson, and M. Wirthensohn. 2013. Effect of deficit irrigation on almond kernel constituents. Acta Hort. 1028:221-223. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71369 | - |
| dc.description.abstract | 受氣候變遷和全球暖化的影響,臺灣近年降雨次數變少,乾旱頻率與時間都增加,台灣農業用水占整體年需水量之70%,未來可能面臨更多缺水壓力。控制田間容水量(field capacity, FC)與施用生物刺激劑(biostimulants)被認為是可以提升農業用水灌溉效率的方式。本研究探討萵苣和玉米等蔬菜作物,在控制灌溉方式下搭配施用生物刺激劑以達到省水或提升產量的可行性。
生物刺激劑屬天然成分及植物和微生物的代謝物,僅影響農作物本身,不傷害環境。本試驗藉由添加被認為具有對抗非生物逆境的功能的甜菜鹼(betaine)與幾丁質(chitin),探討福山半結球型萵苣(Lactuca sativum var. capitata)和玉米‘玉美珍’ (Zea mays ‘White Pearl’) 在正常給水(normal irrigation)和調缺灌溉(regulated deficit irrigation, RDI)下生物刺激劑對其生長和水分利用效率(water use efficiency, WUE)之影響。 結果顯示:在調缺灌溉下噴施50 mM甜菜鹼的萵苣,葉面積較調缺灌溉下未施用甜菜鹼的處理顯著增加48.5%,其產量與對照組沒有顯著差異但節省53.5%的灌溉水,使產量水分利用效率(WUEyield)提升1.1倍;正常給水下噴施50 mM甜菜鹼的萵苣淨光合作用速率提升,產量比對照組多21.6%,但未達顯著差異,且較對照組減少12.7%灌溉水量。玉米在調缺灌溉下噴施100 mM的甜菜鹼,株高、葉面積和產量與對照組無顯著差異,但可節省78.1%的灌溉水;在正常給水下噴施100 mM甜菜鹼可減少17.3%灌溉水量,產量比對照組多20.9%,但未達顯著差異。因此認為甜菜鹼可提升淨光合作用速率並維持光合作用所需之蒸散作用速率,在作物缺水時穩定其生長,維持或增加產量及水分利用效率,在正常給水下也可增加淨光合作用速率提高產量。 萵苣在調缺灌溉下施用2 g/Kg的幾丁質,葉面積較對照組顯著增加25.6%,地下部鮮重顯著提升,產量與對照組無顯著差異,但節省48.3%的灌溉水,WUEyield比對照組增加1.3倍;正常給水下施用4 g/Kg的幾丁質,株高顯著提高,葉面積比對照組顯著增加62.8%,減少8.8%灌溉水量、顯著增產83.6%,淨光合作用速率提高,葉片水分利用效率(WUEi)、WUEyield和乾物重水分效率(WUEbiomass)都較對照組高;玉米在調缺灌溉下施用2 g/Kg的幾丁質,株高、葉面積、果實產量和葉綠素計讀值(chlorophyll meter reading, CMR, SPAD-value)皆顯著高於對照組,節省84.8%的灌溉水並比對照組顯著增加2.3倍的產量;玉米在正常給水下施用4 g/Kg的幾丁質,使葉面積顯著提升,較對照組減少31.1%灌溉水量並顯著增產2.5倍,且比對照組有更高的水分利用效率(WUEi、WUEyield和WUEbiomass)。因此認為幾丁質可促進根系發展,使作物吸收水分能力增強,且增加葉片淨光合作用速率,使作物水分利用效率提升。 萵苣在調缺灌溉下複合施用50 mM甜菜鹼和2 g/Kg的幾丁質,葉面積、產量、乾物重和淨光合作用速率皆較對照組有提升,然結果並未比單獨施用甜菜鹼或幾丁質有更顯著的提升,玉米在調缺灌溉下複合施用100 mM甜菜鹼和2 g/Kg的幾丁質也有相似結果。 綜上所述,施用甜菜鹼和幾丁質,可穩定萵苣和玉米在調缺灌溉下的生長,提升缺水時的產量,在減少灌溉量下提升水分利用效率,達到省水並提高產量的效果。 | zh_TW |
| dc.description.abstract | Affected by climate change and global warming, Taiwan's rainfall has decreased and the frequency and period of drought have increased in recent years. In Taiwan, agricultural water demand accounts for 70% of the total annual water demand. Water shortage pressure may become serious in the future. Controlling field capacity (FC) and the application of biostimulants are considered to be the ways to increase the efficiency of agricultural water irrigation. This study access the feasibility of using biostimulants to save water and increase yields in vegetable crops such as lettuce (Lactuca sativum var. capitata) and maize (Zea mays ‘White Pearl’).
Biostimulants are natural constituents and metabolites of plants and microorganisms that affect the crop itself and do not harm to the environment. The effects of betaine and chitin, which are thought to have a function against abiotic stress, on the growth and water use efficiency (WUE) of Lactuca sativum var. capitata and Zea mays ‘White Pearl’ under normal irrigation and regulated deficit irrigation (RDI) were investigated. The results showed that the leaf area of lettuce which sprayed with 50 mM betaine under RDI significant increase of 48.5% that compared with the lettuce which sprayed 0 mM betaine under RDI. The yield of lettuce did not different with the control but saved 53.5% of the irrigation water. Thus, the yield of water used efficiency (WUEyield) increased by 1.1 times. The lettuce which sprayed with 50 mM betaine under normal irrigation had increased the net photosynthesis rate and decrease 12.7% of irrigation water compared with the control. The yield increased 21.6% than the control, but there was no significant difference. Maize sprayed with 100 mM betaine under RDI which the plant height, leaf area and yield were not significantly different with the control but save 78.1% of irrigation water. Maize sprayed with 100 mM betaine under normal irrigation which the yield was not significantly different with the control but 20.9% more and reduced 17.3% of irrigation water. The results showed that betaine could increase net photosynthesis rate and maintain transpiration rate required for photosynthesis. It could stabilize plants growth, maintain or increase yield and WUE when crops facing water shortage, even under normal irrigation. After treated with 2 g/Kg of chitin under RDI, lettuce leaf area increased significantly by 25.6% compared with the control. The root fresh weight showed a significant increase. Besides, it could save 48.3% of the irrigation water, the yield was not significantly different from the contro. WUEyield increased 1.3 times comparing with the control. Lettuce which applied 4 g/Kg of chitin under normal irrigation had significantly increased plant height and 62.8% of leaf area comparing with the control. It decreased 8.8% of irrigation water and increased 83.6% of the yield , and also promoted photosynthesis rate. Water used efficiency (WUEi), WUEyield and biomass of water used efficiency (WUEbiomass) of leaf were all higher than the control. Maize which applied 2 g/Kg of chitin under RDI, its plant height, leaf area, fruit and chlorophyll meter reading (CMR, SPAD values) were significantly higher than control. It saved 84.8% of irrigation water and the yield rose 2.3 times than control. Maize which applied 4 g/Kg of chitin under normal irrigation, its leaf area was significantly increased. It saved 31.1% of irrigation water and the yield was 2.5 times higher than control. All of water used efficiency (WUEi, WUEyield and WUEbiomass) were higher than control. The results indicated that chitin could promote the development of root system, enhance the water absorb capacity of crops and net photosynthesis rate of leaves, which improved crops WUE. Compared with the contro, lettuce which was applied 50 mM betaine and 2 g/Kg chitin under RDI could improve leaf area, yield, biomass and net photosynthesis rate. However, the results were not better than the treatments with only betaine or chitin. Maize which was applied 100 mM betaine and 2 g/Kg of chitin under RDI also showed similar results. In summary, the application of betaine and chitin could stabilize the growth of lettuce and maize under RDI. Betaine and chitin increased the yield when the water shortage and improve the WUE under RDI to achieve the effects of saving water and increasing production. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:34Z (GMT). No. of bitstreams: 1 ntu-108-R03628135-1.pdf: 2585609 bytes, checksum: 3a5f2da02dea7b1da0fb73e64158bf4a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract v 目錄 viii 表目錄 xi 圖目錄 xiii 第一章 前言 1 第二章 前人研究 2 一、 作物水分利用效率及指標 2 (一) 調缺灌溉 (regulated deficit irrigation, RDI) 2 二、 生物刺激劑介紹 3 (一) 生物刺激劑的種類 3 (二) 生物刺激劑的功效 3 三、 生物刺激劑之相關研究及作用方式 4 (一) 甜菜鹼 4 (二) 幾丁質 5 四、 生物刺激劑未來走向 6 第三章 甜菜鹼在調缺灌溉和正常給水下對萵苣和玉米水分利用效率之影響 9 一、 前言 (Introduction) 9 二、 材料與方法 (Materials and Methods) 10 試驗一、甜菜鹼在調缺灌溉和正常給水下對萵苣生長及水分利用效率之影響 10 (一) 植物材料 10 (二) 試驗設計 10 (三) 調查項目 11 (四) 統計分析 12 試驗二、甜菜鹼在調缺灌溉和正常給水下對玉米生長及水分利用效率之影響 13 (一) 植物材料 13 (二) 試驗設計 13 (三) 調查項目 14 (四) 統計分析 15 三、 結果 (Results) 15 試驗一、甜菜鹼在調缺灌溉和正常給水下對萵苣生長及水分利用效率之影響 15 試驗二、甜菜鹼在調缺灌溉和正常給水下對玉米生長及水分利用效率之影響 18 四、 討論 (Discssion) 20 第四章 幾丁質在調缺灌溉和正常給水下對萵苣和玉米水分利用效率之影響 37 一、 前言 (Introduction) 38 二、 材料與方法 (Materials and Methods) 38 試驗一、幾丁質在調缺灌溉和正常給水下對萵苣生長及水分利用效率之影響 38 (一) 植物材料 38 (二) 試驗設計 39 (三) 調查項目 39 (四) 統計分析 41 試驗二、幾丁質在調缺灌溉和正常給水下對玉米生長及水分利用效率之影響 41 (一) 植物材料 41 (二) 試驗設計 41 (三) 調查項目 42 (四) 統計分析 43 三、 結果 (Results) 44 試驗一、幾丁質在調缺灌溉和正常給水下對萵苣生長及水分利用效率之影響 44 試驗二、幾丁質在調缺灌溉和正常給水下對玉米生長及水分利用效率之影響 46 四、 討論 (Results and Discssion) 48 第五章 複合施用甜菜鹼和幾丁質在調缺灌溉下對萵苣和玉米水分利用效率之影響 63 一、 前言 (Introduction) 64 二、 材料與方法 (Materials and Methods) 64 試驗一、複合施用甜菜鹼和幾丁質在調缺灌溉下對萵苣生長及水分利用效率之影響 64 (一) 植物材料 64 (二) 試驗設計 65 (三) 調查項目 65 (四) 統計分析 67 試驗二、複合施用甜菜鹼和幾丁質在調缺灌溉下對玉米生長及水分利用效率之影響 67 (一) 植物材料 67 (二) 試驗設計 68 (三) 調查項目 68 (四) 統計分析 70 三、 結果 (Results) 70 試驗一、複合施用甜菜鹼和幾丁質在調缺灌溉下對萵苣生長及水分利用效率之影響 70 試驗二、複合施用甜菜鹼和幾丁質在調缺灌溉下對玉米生長及水分利用效率之影響 72 四、 討論 (Discssion) 74 第六章 結論 88 參考文獻 (References) 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 調缺灌溉 | zh_TW |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | 灌溉水量 | zh_TW |
| dc.subject | 乾旱逆境 | zh_TW |
| dc.subject | 節水農業 | zh_TW |
| dc.subject | 生物刺激劑 | zh_TW |
| dc.subject | biostimulants | en |
| dc.subject | drough | en |
| dc.subject | total water irrigation | en |
| dc.subject | photosynthesis | en |
| dc.subject | regulated deficit irrigation | en |
| dc.subject | water saving agriculture | en |
| dc.title | 甜菜鹼與幾丁質對萵苣和玉米水分利用效率之影響 | zh_TW |
| dc.title | Effects of betaine and chitin on water use efficiency of Lettuce and Maize | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅筱鳳,陽棋明,林冠宏 | |
| dc.subject.keyword | 生物刺激劑,調缺灌溉,節水農業,乾旱逆境,灌溉水量,光合作用, | zh_TW |
| dc.subject.keyword | biostimulants,regulated deficit irrigation,water saving agriculture,total water irrigation,photosynthesis,drough, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201900551 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
