Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71351
Title: 以情緒導引強化注意力機制於情緒分析之研究
Sentiment-Guided Attention Mechanism for Sentiment Analysis
Authors: Szu-Hung Wang
王斯泓
Advisor: 許永真
Keyword: 情感分析,情緒分類,情緒辭典,注意力機制,類神經網路,
Sentiment Analysis,Emotion Classification,Lexicon,Attention Mechanism,Neural Networks,
Publication Year : 2019
Degree: 碩士
Abstract: 情緒分析 (sentiment analysis) 是一個找出文字中的情緒與情感的重要任務,常用於分析句子中的情緒與感情。此問題常被視為一種分類的問題,利用深度神經網路模型可以達到很好的成果,注意力機制也被證實有很好的效果。再者,先前研究也指出情緒辭典對情緒分析問題上有很好的成效。然而,情緒辭典並沒有適當地被應用在先前的研究中。
本篇論文探索了情緒引導之注意力機制,以完整利用情緒辭典並將情緒辭典結合在注意力機制中,藉此幫助分類。我們提出兩種結合方法,第一,為了有效利用情緒辭典,我們轉換情緒詞典中的情緒值,使其成為一組增強注意力權重係數,以最小化原本模型內的注意力權重係數之錯誤。第二,我們提出了情緒多頭注意力機制,我們使用從情緒值轉換而來的注意力權重係數,做為第二組注意力頭,以協助模型關注更多資訊。我們實驗在六組情緒分析資料集上,結果顯示此方法準確度皆超越先前最佳的模型,相較於先前的分數提升0.12%到8.12%。
Sentiment analysis is an important task, which extracts sentiment, emotion or affect in text. The problem is often treated as a classification problem for which deep neural methods have been well explored and attention mechanisms have generated promising performance. Studies have shown that lexicon is highly effective for sentiment analysis. However, lexicon has not been fully utilized by the previous methods. No existing method integrates lexicon into the attention mechanism effectively to solve the problem.
This thesis explores the sentiment-guided attention mechanism, which integrates lexicon into attention mechanism and proposes two approaches. First, to utilize sentiment lexicons, we transform lexicon values into guiding weights to minimize the error of attention weights. Second, we propose sentiment multi-head attention to help the model jointly attend to sentiment information provided by the transformed lexicon values.
Experiments show that our models outperform state-of-the-art models on six sentiment analysis benchmarks with improved accuracy of 0.12% to 8.12%.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71351
DOI: 10.6342/NTU201900557
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
2.4 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved