請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71344完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林乃君 | |
| dc.contributor.author | Hiroyuki Oya | en |
| dc.contributor.author | 大矢裕之 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:59:10Z | - |
| dc.date.available | 2029-02-13 | |
| dc.date.copyright | 2019-02-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-14 | |
| dc.identifier.citation | Abadía, J., Lopez-Millan, A. F., Rombola, A. & Abadia, A. (2002).: Organic acids and Fe deficiency: A review. Plant and Soil, 241: 75–86.
Ajmal, M., Ali, H. I., Saeed, R., Akhtar, A., Tahir, M., Mehboob, M. Z. & Ayub, A. (2018).: Biofertilizer as an alternative for chemical fertilizers. RRJAAS, 7: 1–7. Aksorn, E. & Chitsomboon, B. (2013).: The Effects of Plant Growth Promoting Traits on Heavy Metal Uptake of Vetiver Grasss. Am.-Euras. J. Agric. Environ. Sci., 13: 465-470. Alexander, D. B. & d Zuberer, D. A. (1991).: Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils, 12: 39– 45. Ali, S., Charles, T. C. & Glick, B. R. (2017).: Endophytic phytohormones and their role in plant growth promotion. Funct. Impt. Plant Microbiome. 7: 89–105. Alori E.T., Glick B.R. & Babalola O.O. (2017).: Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8: 971. Aoshima, H., Kimura, A., Shibutani, A., Okada, C., Matsumiya, Y. & Kubo, M. (2006).: Evaluation of soil bacterial biomass using environmental DNA extracted by slow-stirring method. Appl. Microbiol. Biotechnol., 71: 875–880. Aoyagi, H. & Kuroda, A. (2012).: Effects of low-shear modeled microgravity on a microbial community filtered through a 0.2μm filter and its potential application in screening for novel microorganisms. J. Biosci. Bioeng., 114:73–79. Babalola, O. O. & Glick, B. R. (2012).: The use of microbial inoculants in African agriculture: current practice and future prospects. J. Food Agric. Environ. 10: 540– 549. Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V. & Muñoz-Rojas, J. (2017).: Next generation of microbial inoculants for agriculture and bioremediation. Microbial. Biotechnol., 10: 19–21. Bashan, Y., de-Bashan, L.E., (2014).: Bacteria /plant growth-promotion. In: Hillel, D, Soil Environ. 1:103–115. Barer, M.R. & C.R. Harwood. (1999).: Bacterial viability and culturability. Adv. Micro. Physiol., 41: 93-137. Beneduzi, A., Ambrosini, A. & Passaglia, L. M. P. (2012).: Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044–1051. Boukhalfa, H., Lack, J., Reilly, S. D., Hersman, L. & Neu, M. P. (2003).: Siderophore production and facilitated uptake of iron and plutonium in P. putida. AIP Conf. Proc. 673: 343–344. Bruns, A., Nübel, U., Cypionka, H. & Overmann, J. (2003).: Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol., 69: 1980–1989. Campanoni, P., Nick, P., Agraria, B., Nazionale, C. & Germany, P. N. (2005).: Auxin- dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4- dichlorophenoxyacetic acid activate different pathways. Plant Physiol., 137: 939– 948. Campos, S. B., Youn, J. W., Farina, R., Jaenicke, S., Jünemann, S., Szczepanowski, R. & Passaglia, L. M. P. (2013).: Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) Evaluated through next-generation sequencing technology. Microbial Ecol., 65: 593–601. Cardinale, M., Ratering, S., Suarez, C., Zapata Montoya, A. M., Geissler-Plaum, R. & Schnell, S. (2015).: Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol. Res., 181: 22–32. Castillo-Aguilar, C. de la C., Zuniga-Aguilar, J. J., Guzman-Antonio, A. A. & Garruna, R. (2017).: PGPR inoculation improves growth, nutrient uptake and physiological parameters of Capsicum chinense plants. Phyton-Int. J. Exp.Bot., 86: 199–204. Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X. & Yang, X. (2017).: The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front. Microbiol., 8: 2538 Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A. & Young, C.C. (2006).: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol., 34: 33–41. Chiboub, M., Saadani, O., Fatnassi, I.C., Abdelkrim, S., Abid, G., Jebara, M. & Jebara, S.H. (2016).: Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Comptes Rendus. Biol., 339: 391–398. Christiansen-Weniger, C. (1992).: N2-fixation by ammonium-excreting Azospirillum brasilense in auxine-induced root tumours of wheat (Triticum aestivum L.). Biol. Fertil. Soils, 13: 165–172. Connon, S.A. & Giovannoni, S.J. (2002).: High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol., 68: 3878–3885. Davis, K.E.R., Joseph, S.J. & Janssen, P.H. (2005).: Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol., 71: 826–834. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G. & Schroeder, J. I. (2014).: Plant salt-tolerance mechanisms. Trends Plant Sci., 19: 371–379. Deka, H., Deka, S. & Baruah, C. (2015): Plant growth promoting rhizobacteria for value addition: mechanism of action. In: Plant-growth promoting rhizobacteria (pgpr) and medicinal plants. Springer, New York, 42: 305–321. Demange, P., Mertz, C., Abdallah, M. A., Bateman, A., Dell, A. & Piémont, Y. (1990).: Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochem., 29:11041-11051. Dey. K.B. (1998).: Phosphate solubilizing organisms in improving fertility status. Plant Physiol. Forum, Naya Prokash, Calcutta, 237-248. Glick B. R. (2014).: Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res., 169: 30-39. Goldstein, A.H. (1986).: Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. Am. J. Altern. Agric., 1: 51–57. Gordon, S.A. & Weber, R.P., 1951.: Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192–195. Hara, S., Isoda, R., Tahvanainen, T. & Hashidoko, Y. (2012).: Trace amounts of furan- 2-carboxylic acids determine the quality of solid agar plates for bacterial culture. PLoS One 7e: 41142. Haruta, S. & Kanno, N. (2015).: Survivability of microbes in natural environments and their ecological impacts. Microbes Environ., 30: 123–125. Hiery, E., Adam, S., Reid, S., Hofmann, J., Sonnewald, S. & Burkovski, A. (2013).: Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium. J. Biotechnol. 168: 348–354. Illmer, P. & Buttinger, R. (2006).: Interactions between iron availability, aluminium toxicity and fungal siderophores. BioMetals, 19: 367–377. Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. & Sait, M. (2002).: Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol., 68: 2391–2396. Kalia, A. & Gosal, S. K. (2011).: Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci., 57: 569-596. Kazan, K. (2013).: Auxin and the integration of environmental signals into plant root development. Ann. Bot., 112: 1655-1665. Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J. & Lee, I. J. (2016).: Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Elec. J. Biotechnol., 21: 58–64. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R. & Vorholt, J. A. (2012).: Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J., 6: 1378–1390. Kraemer, S. M., Bulter, A., Borer, P. & Cervini-Silva, J. (2005).: Siderophores and the dissolution of iron-bearing minerals in marine systems.Rev. Mineral. Geochem., 59: 53–84. Lagos, L., Maruyama, F., Nannipieri, P., Mora, M., Ogram, A. & Jorquera, M. (2015).: Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J. Soil Sci. Plant Nutr., 15: 504-524. Li, L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L. H., Magid, J. Sørensen, S. J. (2013).: Investigating the diversity of Pseudomonas spp. in soil using culture- dependent and independent techniques. Curr. Microbiol., 67: 423-430. Lopez-Millan, A.-F., Grusak, M. A., Abadia, A. & Abadia, J. (2013).: Iron deficiency in plants: an insight from proteomic approaches. Front. Plant Sci., 4: 254. Malboobi, M. A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B. & Morabbi Heravi, K. (2009).: Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol., 25: 1471–1477. Mano, H., Tanaka, F., Nakamura, C., Kaga, H. & Morisaki, H. (2007).: Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ., 22: 175–185. Mohite, B. (2013).: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr., 13: 638-649. Moquet, F., Mamoun, M. & Olivier, J. M. (1996).: Pseudomonas tolaasii and tolaasin: Comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol. Lett., 142: 99–103. Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. (1993).: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59: 695–700. Muyzer, G., Hottevtrager, S., Teske, A. & Wawer, C. (1996).: Denaturing gradient gel electrophoresis in microbial ecology. Microbial. Ecol. Manual., 3: 1-23. Nautiyal, C. S. (1999).: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 170: 265–270. Naik, P. R., Raman, G., Narayanan, K. B. & Sakthivel, N. (2008).: Assessment of genetic and functional diversity of phosphate solubilizing fluorescent Pseudomonads isolated from rhizospheric soil. BMC Microbiol., 8: 230. Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta, A., Belanger, A. & Epstein, S. S. (2010).: Use of ichip for high-throughput in situ cultivation of 'uncultivable microbial species. Appl. Environ. Microbiol., 76: 2445–2450. Ozkara, A., Akyil, D. & Konuk, M. (2016).: Pesticides, environmental pollution, and health (Chapter 1), Environmental Health Risk - M. L. Larramendy and S. Soloneski, IntechOpen: 3-29. Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017).: Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33: 197 Oldroyd G. & Dixon R. (2014).: Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26: 19–24. Paine, S.G. (1919).: A brown blotch disease of cultivated mushrooms. Ann. Appl. Biol. 5: 206- 219. Park, Y. S., Park, K., Kloepper, J. W. & Ryu, C. M. (2015).: Plant growth-promoting rhizobacteria stimulate vegetative growth and asexual reproduction of Kalanchoe daigremontiana. Plant Pathol. J., 31: 310–315. Pham, V. H. T. & Kim, J. (2012).: Cultivation of unculturable soil bacteria. Trends Biotechnol., 30: 475-484. Rahman, I., Shahamat, M., Kirchman, P. A., Russek-Cohen, E. & Colwell, R. R. (1994).: Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol., 60: 3573–3578. Rainey, P. B., Brodey, C. L. & Johnstone, K. (1991).: Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol. Molec. Plant Pathol., 39: 57– 70. Ramette A., Moenne-Loccoz, Y. & Defago, G. (2006).: Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol. Ecol. 55: 369–381 Rappe, M. S. & Giovannoni, S. J. (2003).: The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369–394. Rodriguez, H. & Fraga, R. (1999).: Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319–339. Sadiq, H. M., Jahangir, G. Z., Nasir, I. A., Iqtidar, M. & Iqbal, M. (2013).: Isolation and characterization of phosphate-solubilizing bacteria from rhizosphere soil. Biotechnol. Equip., 27: 4248–4255. Sait, M., Hugenholtz, P. & Janssen, P. H. 2002.: Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation- independent surveys. Environ. Microbiol. 4: 654-666. Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S. & Patel, P. R. (2013).: Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In Bacteria in Agrobiology: Disease Management, 17: 449–471. Schloss, P. D. & Handelsman, J. (2004).: Status of the microbial census. Microbiol. Mol. Biol. Rev. 68: 686–691. Schwyn, B. & Neilands, J. B. (1987).: Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 160: 47–56. Shen, X., Hu, H., Peng, H., Wang, W. & Zhang, X. (2013).: Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:1471–2164. Spaepen, S., &Vanderleyden, J. (2011).: Auxin and plant-microbe interactions. Cold Spring Harb. Perspect Biol. 3 Stamatiadis, S., Werner, M. & Buchanan, M. (1999).: Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl. Soil Ecol., 12: 217–225. Timmermans, M. L., Picott, K. J., Ucciferri, L. & Ross, A. C. (2018).: Culturing marine bacteria from the genus Pseudoalteromonas on a cotton scaffold alters secondary metabolite production. MicrobiologyOpen: e724. Torsvik, V., Goksoyr, J. & Daae, F. L. (1990).: High diversity in DNA of soil bacteria. Appl. Environ. Microbiol., 56: 782–787. Torsvik, V., Sørheim, R. & Goksøyr, J. (1996).: Total bacterial diversity in soil and sediment communities. J. Ind. Microbiol. Biotechnol., 17: 170–178. Toyota, K. (2015).: Bacillus-related spore formers: Attractive agents for plant growth promotion. Microbes Environ., 30: 205. Ullah, I., Khan, A. R., Park, G. S., Lim, J. H., Waqas, M., Lee, I. J. & Shin, J. H. (2013).: Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol., 22: 25–31. Verma, S., Sharma, R. & Chauha, A., (2018).: Plant growth promoting and antagonistic potential of indigenous PGPR from tomato seedlings grown in mid hill regions of Himachal Pradesh. J. Pharm. Phytochem., 7: 968-973. Walpola, B. & Yoon, M.-H. (2013).: Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr. J. Microbiol.Res.,7: 266–275. Wang, Z.-J. (2017).: Studies on the application of the endophytic bacteria to enhance tomato growth and tolerance to biotic stress. Master thesis. Master Program for Plant Medicine, National Taiwan University. Taiwan, R.O.C. Yamaguchi, T. & Blumwald, E. (2005).: Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci., 10: 615–620. Young, C. C., P. D. Rekha, W. A. Lai & A. B. Arun (2006).: Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 95: 76-83. Zuo, Y. & Zhang, F. (2011).: Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil, 339: 83–95. 石井浩介, 中川達功, 福井学 (2000): 微生物生態学への変性剤濃度勾配ゲル電 気泳動法の応用.日本微生物生態学報, 15: 59-73. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71344 | - |
| dc.description.abstract | 促進植物生長細菌 (plant growth-promoting bacteria, PGPB) 已被廣泛認知可直接或間接地促進植物生長。因此,透過分離後利用數種耗工的培養方法篩選菌株之製造螯鐵蛋白、溶磷和合成 IAA 等促進植物生長特性 (plant growth-promoting traits, PGPT),便可獲得許多具潛力的PGPB。雖然並非所有具 PGPT 的細菌都有促進植物生長的效果,但以上述傳統方式評估隨機從土壤和根圈等環境中篩選出來的眾多細菌,常可有效篩選出潛力菌株。儘管此為重要議題,但針對提高傳統方法的效率,也就是能更快篩選到具有較高促進植物成長能力微生物的研究仍佔少數。此外,僅使用單一培養基自一般或根圈土壤分離培養菌株的方法,可能會因未使用對的培養條件而造成可培養的 PGPB 數量與種類是有限的。因此,本研究中擬使用各種纖維素薄膜發展 (1) 新穎且更有效評估 PGPT 的方法,以及 (2) 培養更多樣化微生物群落種類的方法。首先在台灣以傳統方式選擇 5 株具有高 PGP 潛力的 PGPB,並進行番茄共培養試驗,評估其促進植物生長的能力。接下來,便以此些菌株進行測定製造螯鐵蛋白、溶磷和合成 IAA能力方法的優化;結果發現,與傳統方式比較,(1) 搭配使用超純纖維膜 (ultrapure cellulose sheet, UCS) 和硝化纖維膜 (nitrocellulose membrane, NC membrane) 的系統有更好的表現;(2) 在平板上放置 UCS、SCF 或 NC membrane 使培養基表面結構改變,及改變培養基成分兩方法,均可培養出不同的微生物群落。因此,這些新開發的評估方法可能有助於讓我們在未來獲得更多且更多樣化的 PGPB。 | zh_TW |
| dc.description.abstract | It’s widely known that plant growth-promoting bacteria (PGPB) can assist plant growth directly or indirectly. For that reason, many potential PGPB were obtained through isolation followed by screening for their plant growth-promoting traits (PGPTs) such as Indole-3-acetic acid (IAA) production, siderophore production and phosphate solubilization using several labor-consuming, cultivation-dependent assay methods. However, even though bacterial strains with PGPT identified using the conventional assay method do not always possess the ability to promote plant growth, evaluation of bacteria collected from soil or rhizosphere using traditional screening methods is always required. Although this is an important issue, only a few researches have been carried out from this perspective. Furthermore, numbers or species of bacteria isolated from suspension made of bulk or rhizosphere soil using only one medium might be limited as specific cultivation conditions might be required for certain unculturable micro-flora in the environment samples. Hence, in this study, (1) development of a novel, efficient assay method and (2) diversifying unculturable micro-flora in conventional methods by using cellulose films were attempted. Initially, 5 potential PGP isolates with high PGP activities from Taiwan were selected using a conventional method with the assay media, and their in planta PGP activities on tomato plants were also evaluated. Then, isolates were used to normalize the procedure to check three PGPTs, including siderophore production, phosphate solubilization and IAA synthesis. The results showed that (1) better performance can be obtained using a continuous membrane-assisted PGPT assay with nitrocellulose (NC) membrane and ultrapure cellulose sheet (UCS) compared to the conventional method, and (2) changes in both surface structure/architecture of the agar plate with UCS, specific cellulose film (SCF), and NC membrane on it and medium composition can give rise to different cultivable bacteria compared to the conventional method. These newly developed assay methods could allow us to isolate more abundant and diversified PGPB in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:59:10Z (GMT). No. of bitstreams: 1 ntu-108-R06623028-1.pdf: 15415968 bytes, checksum: 4223db8f9546394c31f48c61932d24fe (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Acknowledgements I
中文摘要 II Abstract III Index V List of tables and figures IX Introduction 1 Current situation toward sustainable agriculture and application of PGPB 1 Phosphate solubilizing activity 4 Siderophore producing activity 5 IAA synthesis 6 Current conditions of bacterial isolation and cultivation from the natural environments 7 Motivation and Objectives 11 Materials and Methods 12 Bacterial strains, culture medium and growth conditions 12 Sterilization of the tomato seeds 12 Inoculation of tomato seeds with endophytic bacteria 13 Growth condition of tomato plants 13 Bacterial genomic DNA isolation using phenol/chloroform extraction 14 Siderophore-producing activity assay 15 IAA synthesis activity assay 16 Quantification of the IAA synthesis activity 16 Phosphate-solubilizing activity assay 17 Measurement of photosynthesis activity 18 Investigate the feasibility of the new membrane-assisted PGPT assay with SCF, UCS, NC membrane by using the model bacteria 19 Comparison of PGPT assay sensitivities between conventional and the new membrane-assisted assay methods 20 Optimization of the new membrane-assisted assay method 21 Validation of the newly developed membrane-assisted method for PGPTs of the isolates from root and soil samples and identification of potential PGPB 22 Comparison of micro-flora grown on different membranes 23 Comparison of micro-flora developed on different culture media (XMM and KBM) 24 Genomic DNA extraction using a spin column method 24 Amplification of 16S rRNA for denaturing gradient gel electrophoresis (DGGE) 25 DGGE method 26 The bacterial identification method of specific DNA bands on DGGE analysis 26 Statistic analysis 27 Results 29 Screening of the potential PGPB and comparison of produced each PGPTs 29 PGP potential of candidate isolates on tomato plants in a net house 30 Identification of potential endophytic bacterial isolates 31 Investigation of the feasibility of the membrane-assisted assay for the PGPT assay with SCF, UCS and NC membrane 32 Comparison of efficiency between a conventional and the membrane-assisted methods for PGPT assay using model bacteria 34 Optimization of the new membrane-assisted assay method 36 Validation of the newly developed membrane-assisted PGPT assay and identification of potential PGPB using the isolates from root and soil samples 37 Comparison of micro-flora on different supporting materials (SCF, UCS and NC membrane) 38 Comparison of micro-flora on different culture media 39 Discussion 40 References 54 Appendix 112 Note 114 Tables Table 1. Composition of King's medium B (KBM) ...............................................69 Table 2. Composition of CAS blue agar.................................................................70 Table 3. Composition of amended LB medium. ....................................................71 Table 4. Composition of Salkowski reagent...........................................................72 Table 5. Composition of Sucrose-minimal salts (SMS) medium...........................73 Table 6. Composition of amended National Botanical Research Institute's Phosphate (NBRIP) agar.........................................................................................74 Table 7. Composition of Xylem sap Mimicking Medium (XMM) .......................75 Table 8. Sequences of primers used for PCR-DGGE.............................................76 Table 9. Components of PCR reaction mixture......................................................77 Table 10. Program of touchdown PCR for DGGE analysis...................................78 Table 11. Composition of DGGE gel. ...................................................................79 Table 12. List of the potential PGP activities of each endophyte isolated in a previous study........................................................................................................80 Table 13. Growth index of tomato plants treated with potential endophytic bacteria....................................................................................................................82 Table 14. Effects of endophyte treatment on photosynthetic efficiency of tomato plants........................................................................................................................83 Table 15. Identification of selected isolates by nucleotide BLAST search using 16S rDNA sequences...............................................................................................84 Table 16. Information of the model bacteria for investigating the feasibility of the membrane-assisted PGPT assay method.................................................................85 Table 17. PGPTs of 32 bacterial strains isolated from soil and roots collected from an organic tomato farm............................................................................................86 Table 18. Identification of the selected 14 potential PGPB isolates by using partial sequences of 16S rDNA..........................................................................................88 Table 19. Identification of the bands specific to samples from the membrane-assisited methods using sequences of 16S rDNA.................................89 Table 20. Identification of the bands specific to samples from XMM using sequences of 16S rDNA.................................................................................90 Figures Fig. 1. The experimental design of this study.........................................................91 Fig. 2. The siderophore producing activity of the bacterial strains isolated from soil samples of Xitou......................................................................................................92 Fig. 3. The phosphate solubilization activity of the bacterial strains isolated from soil samples of Xitou...............................................................................................93 Fig. 4. Quantification of IAA production of the bacterial strains isolated from the soil samples of Xitou...............................................................................................94 Fig. 5. Comparison of the membrane-assisted assay for siderophore production................................................................................................................95 Fig. 6. Comparison of the membrane-assisted assay for phosphate solubilization...........................................................................................................96 Fig. 7. Comparison of the membrane-assisted assay for IAA production................................................................................................................97 Fig. 8. Time-course changes of halos on CAS blue agar medium by Pseudomonas tolaasii..............................................................................................98 Fig. 9. Time-course changes of halos on CAS blue agar medium by Pseudomonas fluorescences...........................................................................................................99 Fig. 10. Time-course changes of halos on NBRIP agar by Pseudomonas tolaasii....................................................................................................................100 Fig. 11. Time-course changes of halos on NBRIP agar by Pseudomonas fluorescences.........................................................................................................101 Fig. 12. Comparison of halos produced on CAS agar by P. tolaasii and P. fluorescens with different cultivation order..........................................................102 Fig. 13. Comparison of halos produced on NBRIP agar by P. tolaasii and P. fluorescens with different cultivation order. ........................................................103 Fig. 14. Schematic diagram of the continuous membrane-assisted PGPT assay using UCS and NC membrane..............................................................................104 Fig. 15. Identification of siderophore producing strains from the 32 isolates isolated from samples obtained in an organic tomato farm using the newly developed membrane-assisted assay method........................................................105 Fig. 16. Identification of phosphate solubilizing strains from the 32 isolates isolated from samples obtained in an organic tomato farm using the newly developed membrane-assisted assay method.........................................................106 Fig. 17. Identification of IAA producing strains from the 32 isolates isolated from samples obtained in an organic tomato farm using the newly developed membrane-assisted assay method...........................................................................107 Fig. 18. Bacterial colonies grown on different membranes placed on KBM........108 Fig. 19. The image of DNA pattern of samples from the membrane-assisted method after polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE).........................................................................................................109 Fig. 20. Bacterial colonies grown on XMM and KBM.........................................110 Fig. 21. The image of DNA pattern of samples from different media after polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)........................................................................................................111 Supplementary Fig. 1. Top view and the view of longitudinal section (lateral view) of the filter paper discs placed on SCF, which is composed of a three-dimensional lattice structure on the surface of UCS....................................112 Supplementary Fig. 2. Sensitivity of IAA detection using the Salkowski reagent....................................................................................................................113 | |
| dc.language.iso | en | |
| dc.subject | 促進植物生長細菌 | zh_TW |
| dc.subject | 製造螯鐵分子 | zh_TW |
| dc.subject | 溶磷 | zh_TW |
| dc.subject | 合成 IAA | zh_TW |
| dc.subject | 膜輔助策略 | zh_TW |
| dc.subject | 無法培養之微生物 | zh_TW |
| dc.subject | Phosphate solubilization | en |
| dc.subject | Siderophore production | en |
| dc.subject | Plant growth-promoting bacteria | en |
| dc.subject | Unculturable microorganisms | en |
| dc.subject | IAA synthesis | en |
| dc.subject | Membrane-assisted strategy | en |
| dc.title | 利用膜輔助策略開發有效篩選促進植物生長根棲細菌之方法 | zh_TW |
| dc.title | Development of an Efficient Method for Screening of Plant Growth Promoting Bacteria Using a Membrane-Assisted Strategy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 青柳秀紀 | |
| dc.contributor.oralexamcommittee | 羅凱尹,山田小須彌,阿部淳一 | |
| dc.subject.keyword | 促進植物生長細菌,製造螯鐵分子,溶磷,合成 IAA,膜輔助策略,無法培養之微生物, | zh_TW |
| dc.subject.keyword | Plant growth-promoting bacteria,Siderophore production,Phosphate solubilization,IAA synthesis,Membrane-assisted strategy,Unculturable microorganisms, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU201900535 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-02-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 15.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
