Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71344
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林乃君
dc.contributor.authorHiroyuki Oyaen
dc.contributor.author大矢裕之zh_TW
dc.date.accessioned2021-06-17T05:59:10Z-
dc.date.available2029-02-13
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-14
dc.identifier.citationAbadía, J., Lopez-Millan, A. F., Rombola, A. & Abadia, A. (2002).: Organic acids and Fe deficiency: A review. Plant and Soil, 241: 75–86.
Ajmal, M., Ali, H. I., Saeed, R., Akhtar, A., Tahir, M., Mehboob, M. Z. & Ayub, A. (2018).: Biofertilizer as an alternative for chemical fertilizers. RRJAAS, 7: 1–7.
Aksorn, E. & Chitsomboon, B. (2013).: The Effects of Plant Growth Promoting Traits on Heavy Metal Uptake of Vetiver Grasss. Am.-Euras. J. Agric. Environ. Sci., 13: 465-470.
Alexander, D. B. & d Zuberer, D. A. (1991).: Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils, 12: 39– 45.
Ali, S., Charles, T. C. & Glick, B. R. (2017).: Endophytic phytohormones and their role in plant growth promotion. Funct. Impt. Plant Microbiome. 7: 89–105.
Alori E.T., Glick B.R. & Babalola O.O. (2017).: Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8: 971.
Aoshima, H., Kimura, A., Shibutani, A., Okada, C., Matsumiya, Y. & Kubo, M.
(2006).: Evaluation of soil bacterial biomass using environmental DNA extracted by slow-stirring method. Appl. Microbiol. Biotechnol., 71: 875–880. Aoyagi, H. & Kuroda, A. (2012).: Effects of low-shear modeled microgravity on a microbial community filtered through a 0.2μm filter and its potential application in
screening for novel microorganisms. J. Biosci. Bioeng., 114:73–79. Babalola, O. O. & Glick, B. R. (2012).: The use of microbial inoculants in African agriculture: current practice and future prospects. J. Food Agric. Environ. 10: 540–
549.
Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V. & Muñoz-Rojas, J. (2017).: Next generation of microbial inoculants for agriculture and bioremediation. Microbial. Biotechnol., 10: 19–21.
Bashan, Y., de-Bashan, L.E., (2014).: Bacteria /plant growth-promotion. In: Hillel, D, Soil Environ. 1:103–115.
Barer, M.R. & C.R. Harwood. (1999).: Bacterial viability and culturability. Adv. Micro. Physiol., 41: 93-137.
Beneduzi, A., Ambrosini, A. & Passaglia, L. M. P. (2012).: Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044–1051.
Boukhalfa, H., Lack, J., Reilly, S. D., Hersman, L. & Neu, M. P. (2003).: Siderophore production and facilitated uptake of iron and plutonium in P. putida. AIP Conf. Proc. 673: 343–344.
Bruns, A., Nübel, U., Cypionka, H. & Overmann, J. (2003).: Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol., 69: 1980–1989.
Campanoni, P., Nick, P., Agraria, B., Nazionale, C. & Germany, P. N. (2005).: Auxin- dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4- dichlorophenoxyacetic acid activate different pathways. Plant Physiol., 137: 939– 948.
Campos, S. B., Youn, J. W., Farina, R., Jaenicke, S., Jünemann, S., Szczepanowski, R. & Passaglia, L. M. P. (2013).: Changes in root bacterial communities associated to two different development stages of canola (Brassica napus L. var oleifera) Evaluated through next-generation sequencing technology. Microbial Ecol., 65: 593–601.
Cardinale, M., Ratering, S., Suarez, C., Zapata Montoya, A. M., Geissler-Plaum, R.
& Schnell, S. (2015).: Paradox of plant growth promotion potential of rhizobacteria
and their actual promotion effect on growth of barley (Hordeum vulgare L.) under
salt stress. Microbiol. Res., 181: 22–32. Castillo-Aguilar, C. de la C., Zuniga-Aguilar, J. J., Guzman-Antonio, A. A. &
Garruna, R. (2017).: PGPR inoculation improves growth, nutrient uptake and physiological parameters of Capsicum chinense plants. Phyton-Int. J. Exp.Bot., 86: 199–204.
Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X. & Yang, X. (2017).: The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance. Front. Microbiol., 8: 2538
Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A. & Young, C.C. (2006).:
Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate
solubilizing abilities. Appl. Soil Ecol., 34: 33–41. Chiboub, M., Saadani, O., Fatnassi, I.C., Abdelkrim, S., Abid, G., Jebara, M. &
Jebara, S.H. (2016).: Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Comptes Rendus. Biol., 339: 391–398.
Christiansen-Weniger, C. (1992).: N2-fixation by ammonium-excreting Azospirillum brasilense in auxine-induced root tumours of wheat (Triticum aestivum L.). Biol.
Fertil. Soils, 13: 165–172. Connon, S.A. & Giovannoni, S.J. (2002).: High-throughput methods for culturing
microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl.
Environ. Microbiol., 68: 3878–3885. Davis, K.E.R., Joseph, S.J. & Janssen, P.H. (2005).: Effects of growth medium,
inoculum size, and incubation time on culturability and isolation of soil
bacteria. Appl. Environ. Microbiol., 71: 826–834. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G. & Schroeder, J. I. (2014).:
Plant salt-tolerance mechanisms. Trends Plant Sci., 19: 371–379. Deka, H., Deka, S. & Baruah, C. (2015): Plant growth promoting rhizobacteria for value addition: mechanism of action. In: Plant-growth promoting rhizobacteria (pgpr) and
medicinal plants. Springer, New York, 42: 305–321.
Demange, P., Mertz, C., Abdallah, M. A., Bateman, A., Dell, A. & Piémont, Y. (1990).: Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of
Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino
acid. Biochem., 29:11041-11051. Dey. K.B. (1998).: Phosphate solubilizing organisms in improving fertility status. Plant
Physiol. Forum, Naya Prokash, Calcutta, 237-248. Glick B. R. (2014).: Bacteria with ACC deaminase can promote plant growth and help
to feed the world. Microbiol Res., 169: 30-39. Goldstein, A.H. (1986).: Bacterial solubilization of mineral phosphates: Historical
perspective and future prospects. Am. J. Altern. Agric., 1: 51–57. Gordon, S.A. & Weber, R.P., 1951.: Colorimetric estimation of indole acetic acid. Plant
Physiol. 26: 192–195. Hara, S., Isoda, R., Tahvanainen, T. & Hashidoko, Y. (2012).: Trace amounts of furan-
2-carboxylic acids determine the quality of solid agar plates for bacterial
culture. PLoS One 7e: 41142. Haruta, S. & Kanno, N. (2015).: Survivability of microbes in natural environments and
their ecological impacts. Microbes Environ., 30: 123–125. Hiery, E., Adam, S., Reid, S., Hofmann, J., Sonnewald, S. & Burkovski, A. (2013).:
Genome-wide transcriptome analysis of Clavibacter michiganensis subsp.
michiganensis grown in xylem mimicking medium. J. Biotechnol. 168: 348–354.
Illmer, P. & Buttinger, R. (2006).: Interactions between iron availability, aluminium toxicity and fungal siderophores. BioMetals, 19: 367–377.
Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M. & Sait, M. (2002).: Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol., 68: 2391–2396.
Kalia, A. & Gosal, S. K. (2011).: Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci., 57: 569-596.
Kazan, K. (2013).: Auxin and the integration of environmental signals into plant root development. Ann. Bot., 112: 1655-1665.
Khan, A. L., Halo, B. A., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J. & Lee, I. J. (2016).: Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Elec. J. Biotechnol., 21: 58–64.
Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R. & Vorholt, J. A. (2012).: Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J., 6: 1378–1390.
Kraemer, S. M., Bulter, A., Borer, P. & Cervini-Silva, J. (2005).: Siderophores and the dissolution of iron-bearing minerals in marine systems.Rev. Mineral.
Geochem., 59: 53–84. Lagos, L., Maruyama, F., Nannipieri, P., Mora, M., Ogram, A. & Jorquera, M.
(2015).: Current overview on the study of bacteria in the rhizosphere by modern
molecular techniques: a mini-review. J. Soil Sci. Plant Nutr., 15: 504-524. Li, L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L. H., Magid, J. Sørensen, S. J. (2013).: Investigating the diversity of Pseudomonas spp. in soil using culture-
dependent and independent techniques. Curr. Microbiol., 67: 423-430. Lopez-Millan, A.-F., Grusak, M. A., Abadia, A. & Abadia, J. (2013).: Iron deficiency
in plants: an insight from proteomic approaches. Front. Plant Sci., 4: 254. Malboobi, M. A., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B. & Morabbi Heravi, K. (2009).: Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J. Microbiol. Biotechnol., 25:
1471–1477. Mano, H., Tanaka, F., Nakamura, C., Kaga, H. & Morisaki, H. (2007).: Culturable
endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza
sativa) cultivated in a paddy field. Microbes Environ., 22: 175–185.
Mohite, B. (2013).: Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr., 13: 638-649.
Moquet, F., Mamoun, M. & Olivier, J. M. (1996).: Pseudomonas tolaasii and tolaasin: Comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol. Lett., 142: 99–103.
Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. (1993).: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59: 695–700.
Muyzer, G., Hottevtrager, S., Teske, A. & Wawer, C. (1996).: Denaturing gradient gel electrophoresis in microbial ecology. Microbial. Ecol. Manual., 3: 1-23.
Nautiyal, C. S. (1999).: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 170: 265–270.
Naik, P. R., Raman, G., Narayanan, K. B. & Sakthivel, N. (2008).: Assessment of
genetic and functional diversity of phosphate solubilizing fluorescent
Pseudomonads isolated from rhizospheric soil. BMC Microbiol., 8: 230. Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta, A., Belanger, A. & Epstein, S. S. (2010).: Use of ichip for high-throughput in situ cultivation of 'uncultivable microbial species. Appl. Environ. Microbiol., 76: 2445–2450.
Ozkara, A., Akyil, D. & Konuk, M. (2016).: Pesticides, environmental pollution, and health (Chapter 1), Environmental Health Risk - M. L. Larramendy and S. Soloneski, IntechOpen: 3-29.
Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017).: Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33: 197
Oldroyd G. & Dixon R. (2014).: Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26: 19–24.
Paine, S.G. (1919).: A brown blotch disease of cultivated mushrooms. Ann. Appl. Biol. 5: 206- 219.
Park, Y. S., Park, K., Kloepper, J. W. & Ryu, C. M. (2015).: Plant growth-promoting rhizobacteria stimulate vegetative growth and asexual reproduction of Kalanchoe daigremontiana. Plant Pathol. J., 31: 310–315.
Pham, V. H. T. & Kim, J. (2012).: Cultivation of unculturable soil bacteria. Trends Biotechnol., 30: 475-484.
Rahman, I., Shahamat, M., Kirchman, P. A., Russek-Cohen, E. & Colwell, R. R. (1994).: Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol., 60: 3573–3578.
Rainey, P. B., Brodey, C. L. & Johnstone, K. (1991).: Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol. Molec. Plant Pathol., 39: 57– 70.
Ramette A., Moenne-Loccoz, Y. & Defago, G. (2006).: Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol. Ecol. 55: 369–381
Rappe, M. S. & Giovannoni, S. J. (2003).: The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369–394.
Rodriguez, H. & Fraga, R. (1999).: Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319–339.
Sadiq, H. M., Jahangir, G. Z., Nasir, I. A., Iqtidar, M. & Iqbal, M. (2013).: Isolation
and characterization of phosphate-solubilizing bacteria from rhizosphere soil. Biotechnol. Equip., 27: 4248–4255. Sait, M., Hugenholtz, P. & Janssen, P. H. 2002.: Cultivation of globally distributed soil
bacteria from phylogenetic lineages previously only detected in cultivation-
independent surveys. Environ. Microbiol. 4: 654-666. Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S. & Patel, P. R.
(2013).: Siderophore producing PGPR for crop nutrition and phytopathogen
suppression. In Bacteria in Agrobiology: Disease Management, 17: 449–471. Schloss, P. D. & Handelsman, J. (2004).: Status of the microbial census. Microbiol. Mol.
Biol. Rev. 68: 686–691. Schwyn, B. & Neilands, J. B. (1987).: Universal chemical assay for the detection and
determination of siderophores. Anal. Biochem., 160: 47–56. Shen, X., Hu, H., Peng, H., Wang, W. & Zhang, X. (2013).: Comparative genomic
analysis of four representative plant growth-promoting rhizobacteria in
Pseudomonas. BMC Genomics 14:1471–2164. Spaepen, S., &Vanderleyden, J. (2011).: Auxin and plant-microbe interactions. Cold
Spring Harb. Perspect Biol. 3
Stamatiadis, S., Werner, M. & Buchanan, M. (1999).: Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito
County, California). Appl. Soil Ecol., 12: 217–225. Timmermans, M. L., Picott, K. J., Ucciferri, L. & Ross, A. C. (2018).: Culturing
marine bacteria from the genus Pseudoalteromonas on a cotton scaffold alters
secondary metabolite production. MicrobiologyOpen: e724. Torsvik, V., Goksoyr, J. & Daae, F. L. (1990).: High diversity in DNA of soil
bacteria. Appl. Environ. Microbiol., 56: 782–787. Torsvik, V., Sørheim, R. & Goksøyr, J. (1996).: Total bacterial diversity in soil and
sediment communities. J. Ind. Microbiol. Biotechnol., 17: 170–178. Toyota, K. (2015).: Bacillus-related spore formers: Attractive agents for plant growth
promotion. Microbes Environ., 30: 205. Ullah, I., Khan, A. R., Park, G. S., Lim, J. H., Waqas, M., Lee, I. J. & Shin, J. H.
(2013).: Analysis of phytohormones and phosphate solubilization in Photorhabdus
spp. Food Sci. Biotechnol., 22: 25–31. Verma, S., Sharma, R. & Chauha, A., (2018).: Plant growth promoting and antagonistic
potential of indigenous PGPR from tomato seedlings grown in mid hill regions of
Himachal Pradesh. J. Pharm. Phytochem., 7: 968-973.
Walpola, B. & Yoon, M.-H. (2013).: Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr. J. Microbiol.Res.,7: 266–275.
Wang, Z.-J. (2017).: Studies on the application of the endophytic bacteria to enhance tomato growth and tolerance to biotic stress. Master thesis. Master Program for Plant Medicine, National Taiwan University. Taiwan, R.O.C.
Yamaguchi, T. & Blumwald, E. (2005).: Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci., 10: 615–620.
Young, C. C., P. D. Rekha, W. A. Lai & A. B. Arun (2006).: Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 95: 76-83.
Zuo, Y. & Zhang, F. (2011).: Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil, 339: 83–95.
石井浩介, 中川達功, 福井学 (2000): 微生物生態学への変性剤濃度勾配ゲル電 気泳動法の応用.日本微生物生態学報, 15: 59-73.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71344-
dc.description.abstract促進植物生長細菌 (plant growth-promoting bacteria, PGPB) 已被廣泛認知可直接或間接地促進植物生長。因此,透過分離後利用數種耗工的培養方法篩選菌株之製造螯鐵蛋白、溶磷和合成 IAA 等促進植物生長特性 (plant growth-promoting traits, PGPT),便可獲得許多具潛力的PGPB。雖然並非所有具 PGPT 的細菌都有促進植物生長的效果,但以上述傳統方式評估隨機從土壤和根圈等環境中篩選出來的眾多細菌,常可有效篩選出潛力菌株。儘管此為重要議題,但針對提高傳統方法的效率,也就是能更快篩選到具有較高促進植物成長能力微生物的研究仍佔少數。此外,僅使用單一培養基自一般或根圈土壤分離培養菌株的方法,可能會因未使用對的培養條件而造成可培養的 PGPB 數量與種類是有限的。因此,本研究中擬使用各種纖維素薄膜發展 (1) 新穎且更有效評估 PGPT 的方法,以及 (2) 培養更多樣化微生物群落種類的方法。首先在台灣以傳統方式選擇 5 株具有高 PGP 潛力的 PGPB,並進行番茄共培養試驗,評估其促進植物生長的能力。接下來,便以此些菌株進行測定製造螯鐵蛋白、溶磷和合成 IAA能力方法的優化;結果發現,與傳統方式比較,(1) 搭配使用超純纖維膜 (ultrapure cellulose sheet, UCS) 和硝化纖維膜 (nitrocellulose membrane, NC membrane) 的系統有更好的表現;(2) 在平板上放置 UCS、SCF 或 NC membrane 使培養基表面結構改變,及改變培養基成分兩方法,均可培養出不同的微生物群落。因此,這些新開發的評估方法可能有助於讓我們在未來獲得更多且更多樣化的 PGPB。zh_TW
dc.description.abstractIt’s widely known that plant growth-promoting bacteria (PGPB) can assist plant growth directly or indirectly. For that reason, many potential PGPB were obtained through isolation followed by screening for their plant growth-promoting traits (PGPTs) such as Indole-3-acetic acid (IAA) production, siderophore production and phosphate solubilization using several labor-consuming, cultivation-dependent assay methods. However, even though bacterial strains with PGPT identified using the conventional assay method do not always possess the ability to promote plant growth, evaluation of bacteria collected from soil or rhizosphere using traditional screening methods is always required. Although this is an important issue, only a few researches have been carried out from this perspective. Furthermore, numbers or species of bacteria isolated from suspension made of bulk or rhizosphere soil using only one medium might be limited as specific cultivation conditions might be required for certain unculturable micro-flora in the environment samples. Hence, in this study, (1) development of a novel, efficient ‬ ‪assay method and (2) diversifying unculturable micro-flora in conventional methods by using cellulose films were attempted. Initially, 5 potential PGP isolates with high PGP activities from Taiwan were selected using a conventional method with the assay media, and their in planta PGP activities on tomato plants were also evaluated. Then, isolates were used to normalize the procedure to check three PGPTs, including siderophore production, phosphate solubilization and IAA synthesis. The results showed that (1) better performance can be obtained using a continuous membrane-assisted PGPT assay with nitrocellulose (NC) membrane and ultrapure cellulose sheet (UCS) compared to the conventional method, and (2) changes in both surface structure/architecture of the agar plate with UCS, specific cellulose film (SCF), and NC membrane on it and medium composition can give rise to different cultivable bacteria compared to the conventional method. These newly developed assay methods could allow us to isolate more abundant and diversified PGPB in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:59:10Z (GMT). No. of bitstreams: 1
ntu-108-R06623028-1.pdf: 15415968 bytes, checksum: 4223db8f9546394c31f48c61932d24fe (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsAcknowledgements I
中文摘要 II
Abstract III
Index V
List of tables and figures IX
Introduction 1
Current situation toward sustainable agriculture and application of PGPB 1
Phosphate solubilizing activity 4
Siderophore producing activity 5
IAA synthesis 6
Current conditions of bacterial isolation and cultivation from the natural environments 7
Motivation and Objectives 11
Materials and Methods 12
Bacterial strains, culture medium and growth conditions 12
Sterilization of the tomato seeds 12
Inoculation of tomato seeds with endophytic bacteria 13
Growth condition of tomato plants 13
Bacterial genomic DNA isolation using phenol/chloroform extraction 14
Siderophore-producing activity assay 15
IAA synthesis activity assay 16
Quantification of the IAA synthesis activity 16
Phosphate-solubilizing activity assay 17
Measurement of photosynthesis activity 18
Investigate the feasibility of the new membrane-assisted PGPT assay with SCF, UCS, NC membrane by using the model bacteria 19
Comparison of PGPT assay sensitivities between conventional and the new membrane-assisted assay methods 20
Optimization of the new membrane-assisted assay method 21
Validation of the newly developed membrane-assisted method for PGPTs of the isolates from root and soil samples and identification of potential PGPB 22
Comparison of micro-flora grown on different membranes 23
Comparison of micro-flora developed on different culture media (XMM and KBM) 24
Genomic DNA extraction using a spin column method 24
Amplification of 16S rRNA for denaturing gradient gel electrophoresis (DGGE) 25
DGGE method 26
The bacterial identification method of specific DNA bands on DGGE analysis 26
Statistic analysis 27
Results 29
Screening of the potential PGPB and comparison of produced each PGPTs 29
PGP potential of candidate isolates on tomato plants in a net house 30
Identification of potential endophytic bacterial isolates 31
Investigation of the feasibility of the membrane-assisted assay for the PGPT assay with SCF, UCS and NC membrane 32
Comparison of efficiency between a conventional and the membrane-assisted methods for PGPT assay using model bacteria 34
Optimization of the new membrane-assisted assay method 36
Validation of the newly developed membrane-assisted PGPT assay and identification of potential PGPB using the isolates from root and soil samples 37
Comparison of micro-flora on different supporting materials (SCF, UCS and NC membrane) 38
Comparison of micro-flora on different culture media 39
Discussion 40
References 54
Appendix 112
Note 114
Tables
Table 1. Composition of King's medium B (KBM) ...............................................69
Table 2. Composition of CAS blue agar.................................................................70
Table 3. Composition of amended LB medium. ....................................................71
Table 4. Composition of Salkowski reagent...........................................................72
Table 5. Composition of Sucrose-minimal salts (SMS) medium...........................73
Table 6. Composition of amended National Botanical Research Institute's
Phosphate (NBRIP) agar.........................................................................................74
Table 7. Composition of Xylem sap Mimicking Medium (XMM) .......................75
Table 8. Sequences of primers used for PCR-DGGE.............................................76
Table 9. Components of PCR reaction mixture......................................................77
Table 10. Program of touchdown PCR for DGGE analysis...................................78
Table 11. Composition of DGGE gel. ...................................................................79
Table 12. List of the potential PGP activities of each endophyte isolated in a
previous study........................................................................................................80
Table 13. Growth index of tomato plants treated with potential endophytic
bacteria....................................................................................................................82
Table 14. Effects of endophyte treatment on photosynthetic efficiency of tomato
plants........................................................................................................................83
Table 15. Identification of selected isolates by nucleotide BLAST search using
16S rDNA sequences...............................................................................................84
Table 16. Information of the model bacteria for investigating the feasibility of the
membrane-assisted PGPT assay method.................................................................85
Table 17. PGPTs of 32 bacterial strains isolated from soil and roots collected from
an organic tomato farm............................................................................................86
Table 18. Identification of the selected 14 potential PGPB isolates by using partial
sequences of 16S rDNA..........................................................................................88
Table 19. Identification of the bands specific to samples from the
membrane-assisited methods using sequences of 16S rDNA.................................89
Table 20. Identification of the bands specific to samples from XMM
using sequences of 16S rDNA.................................................................................90
Figures
Fig. 1. The experimental design of this study.........................................................91
Fig. 2. The siderophore producing activity of the bacterial strains isolated from soil samples of Xitou......................................................................................................92
Fig. 3. The phosphate solubilization activity of the bacterial strains isolated from
soil samples of Xitou...............................................................................................93
Fig. 4. Quantification of IAA production of the bacterial strains isolated from the
soil samples of Xitou...............................................................................................94
Fig. 5. Comparison of the membrane-assisted assay for siderophore
production................................................................................................................95
Fig. 6. Comparison of the membrane-assisted assay for phosphate
solubilization...........................................................................................................96
Fig. 7. Comparison of the membrane-assisted assay for IAA
production................................................................................................................97
Fig. 8. Time-course changes of halos on CAS blue agar medium by
Pseudomonas tolaasii..............................................................................................98

Fig. 9. Time-course changes of halos on CAS blue agar medium by Pseudomonas
fluorescences...........................................................................................................99
Fig. 10. Time-course changes of halos on NBRIP agar by Pseudomonas
tolaasii....................................................................................................................100
Fig. 11. Time-course changes of halos on NBRIP agar by Pseudomonas
fluorescences.........................................................................................................101
Fig. 12. Comparison of halos produced on CAS agar by P. tolaasii and P.
fluorescens with different cultivation order..........................................................102
Fig. 13. Comparison of halos produced on NBRIP agar by P. tolaasii and P.
fluorescens with different cultivation order. ........................................................103
Fig. 14. Schematic diagram of the continuous membrane-assisted PGPT assay
using UCS and NC membrane..............................................................................104
Fig. 15. Identification of siderophore producing strains from the 32 isolates
isolated from samples obtained in an organic tomato farm using the newly
developed membrane-assisted assay method........................................................105

Fig. 16. Identification of phosphate solubilizing strains from the 32 isolates isolated from samples obtained in an organic tomato farm using the newly developed membrane-assisted assay method.........................................................106
Fig. 17. Identification of IAA producing strains from the 32 isolates isolated from samples obtained in an organic tomato farm using the newly developed membrane-assisted assay method...........................................................................107
Fig. 18. Bacterial colonies grown on different membranes placed on KBM........108
Fig. 19. The image of DNA pattern of samples from the membrane-assisted method after polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE).........................................................................................................109
Fig. 20. Bacterial colonies grown on XMM and KBM.........................................110
Fig. 21. The image of DNA pattern of samples from different media after
polymerase chain reaction-denaturing gradient gel electrophoresis
(PCR-DGGE)........................................................................................................111


Supplementary Fig. 1. Top view and the view of longitudinal section (lateral view) of the filter paper discs placed on SCF, which is composed of a three-dimensional lattice structure on the surface of UCS....................................112
Supplementary Fig. 2. Sensitivity of IAA detection using the Salkowski reagent....................................................................................................................113
dc.language.isoen
dc.subject促進植物生長細菌zh_TW
dc.subject製造螯鐵分子zh_TW
dc.subject溶磷zh_TW
dc.subject合成 IAAzh_TW
dc.subject膜輔助策略zh_TW
dc.subject無法培養之微生物zh_TW
dc.subjectPhosphate solubilizationen
dc.subjectSiderophore productionen
dc.subjectPlant growth-promoting bacteriaen
dc.subjectUnculturable microorganismsen
dc.subjectIAA synthesisen
dc.subjectMembrane-assisted strategyen
dc.title利用膜輔助策略開發有效篩選促進植物生長根棲細菌之方法zh_TW
dc.titleDevelopment of an Efficient Method for Screening of ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬Plant Growth Promoting Bacteria Using a Membrane-Assisted Strategyen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.coadvisor青柳秀紀
dc.contributor.oralexamcommittee羅凱尹,山田小須彌,阿部淳一
dc.subject.keyword促進植物生長細菌,製造螯鐵分子,溶磷,合成 IAA,膜輔助策略,無法培養之微生物,zh_TW
dc.subject.keywordPlant growth-promoting bacteria,Siderophore production,Phosphate solubilization,IAA synthesis,Membrane-assisted strategy,Unculturable microorganisms,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201900535
dc.rights.note有償授權
dc.date.accepted2019-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
15.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved