Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71331
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李秀香(Hsiu-Hsiang Lee) | |
dc.contributor.author | Chih Lin | en |
dc.contributor.author | 林芷 | zh_TW |
dc.date.accessioned | 2021-06-17T05:58:59Z | - |
dc.date.available | 2024-03-05 | |
dc.date.copyright | 2019-03-05 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-02-14 | |
dc.identifier.citation | Abdu, U., D. Bar and T. Schupbach (2006). 'spn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila.' Development 133(8): 1477-1484.
Bitan, A., G. M. Guild, D. Bar-Dubin and U. Abdu (2010). 'Asymmetric microtubule function is an essential requirement for polarized organization of the Drosophila bristle.' Mol Cell Biol 30(2): 496-507. Cadwell, K. (2016). 'Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis.' Nat Rev Immunol 16(11): 661-675. Campa, C. C. and E. Hirsch (2017). 'Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking.' Adv Biol Regul 63: 132-139. Dai, Y. B., X. J. Tan, W. F. Wu, M. Warner and J. A. Gustafsson (2012). 'Liver X receptor beta protects dopaminergic neurons in a mouse model of Parkinson disease.' Proc Natl Acad Sci U S A 109(32): 13112-13117. Garcia-Lopez, P., V. Garcia-Marin, R. Martinez-Murillo and M. Freire (2010). 'Cajal's achievements in the field of the development of dendritic arbors.' Int J Dev Biol 54(10): 1405-1417. Goncalves, J. T., C. W. Bloyd, M. Shtrahman, S. T. Johnston, S. T. Schafer, S. L. Parylak, T. Tran, T. Chang and F. H. Gage (2016). 'In vivo imaging of dendritic pruning in dentate granule cells.' Nat Neurosci 19(6): 788-791. Han, C., Y. Song, H. Xiao, D. Wang, N. C. Franc, L. Y. Jan and Y. N. Jan (2014). 'Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila.' Neuron 81(3): 544-560. Herzmann, S., R. Krumkamp, S. Rode, C. Kintrup and S. Rumpf (2017). 'PAR-1 promotes microtubule breakdown during dendrite pruning in Drosophila.' EMBO J 36(13): 1981-1991. Jan, Y. N. and L. Y. Jan (2010). 'Branching out: mechanisms of dendritic arborization.' Nat Rev Neurosci 11(5): 316-328. Jones, D., G. Jones and P. E. Teal (2013). 'Sesquiterpene action, and morphogenetic signaling through the ortholog of retinoid X receptor, in higher Diptera.' Gen Comp Endocrinol 194: 326-335. Kanamori, T., M. I. Kanai, Y. Dairyo, K. Yasunaga, R. K. Morikawa and K. Emoto (2013). 'Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons.' Science 340(6139): 1475-1478. Kanamori, T., J. Yoshino, K. Yasunaga, Y. Dairyo and K. Emoto (2015). 'Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons.' Nat Commun 6: 6515. Kim, J. Y., A. A. Beg and E. B. Haura (2013). 'Non-canonical IKKs, IKK and TBK1, as novel therapeutic targets in the treatment of non-small cell lung cancer.' Expert Opin Ther Targets 17(10): 1109-1112. Kirilly, D., Y. Gu, Y. Huang, Z. Wu, A. Bashirullah, B. C. Low, A. L. Kolodkin, H. Wang and F. Yu (2009). 'A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning.' Nat Neurosci 12(12): 1497-1505. Kuo, C. T., L. Y. Jan and Y. N. Jan (2005). 'Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling.' Proc Natl Acad Sci U S A 102(42): 15230-15235. Kuranaga, E., H. Kanuka, A. Tonoki, K. Takemoto, T. Tomioka, M. Kobayashi, S. Hayashi and M. Miura (2006). 'Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs.' Cell 126(3): 583-596. Lee, H. H., L. Y. Jan and Y. N. Jan (2009). 'Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis.' Proc Natl Acad Sci U S A 106(15): 6363-6368. Lin, D. M., G. Wang F Fau - Lowe, G. H. Lowe G Fau - Gold, R. Gold Gh Fau - Axel, J. Axel R Fau - Ngai, L. Ngai J Fau - Brunet and L. Brunet (2000). 'Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity.' Neuron(0896-6273 (Print)). Loncle, N., M. Agromayor, J. Martin-Serrano and D. W. Williams (2015). 'An ESCRT module is required for neuron pruning.' Sci Rep 5: 8461. Loncle, N. and D. W. Williams (2012). 'An interaction screen identifies headcase as a regulator of large-scale pruning.' J Neurosci 32(48): 17086-17096. Matsutani, S. and N. Yamamoto (2000). 'Differentiation of mitral cell dendrites in the developing main olfactory bulbs of normal and naris-occluded rats.' J Comp Neurol 418(4): 402-410. Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman and P. Group (2009). 'Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.' PLoS Med 6(7): e1000097. Mumm, J. S., P. R. Williams, L. Godinho, A. Koerber, A. J. Pittman, T. Roeser, C. B. Chien, H. Baier and R. O. Wong (2006). 'In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells.' Neuron 52(4): 609-621. Nair-Gupta, P., A. Baccarini, N. Tung, F. Seyffer, O. Florey, Y. Huang, M. Banerjee, M. Overholtzer, P. A. Roche, R. Tampe, B. D. Brown, D. Amsen, S. W. Whiteheart and J. M. Blander (2014). 'TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation.' Cell 158(3): 506-521. Oshima, K., M. Takeda, E. Kuranaga, R. Ueda, T. Aigaki, M. Miura and S. Hayashi (2006). 'IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis.' Curr Biol 16(15): 1531-1537. Papadopoulos, J. S. and R. Agarwala (2007). 'COBALT: constraint-based alignment tool for multiple protein sequences.' Bioinformatics 23(9): 1073-1079. Parkinson, K., A. E. Baines, T. Keller, N. Gruenheit, L. Bragg, R. A. North and C. R. Thompson (2014). 'Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel.' Nat Cell Biol 16(1): 87-98. Puram, S. V. and A. Bonni (2013). 'Cell-intrinsic drivers of dendrite morphogenesis.' Development 140(23): 4657-4671. Rumpf, S., S. B. Lee, L. Y. Jan and Y. N. Jan (2011). 'Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1.' Development 138(6): 1153-1160. Shapiro, R. S. and K. V. Anderson (2006). 'Drosophila Ik2, a member of the I kappa B kinase family, is required for mRNA localization during oogenesis.' Development 133(8): 1467-1475. Sharma, S., B. R. tenOever, N. Grandvaux, G. P. Zhou, R. Lin and J. Hiscott (2003). 'Triggering the interferon antiviral response through an IKK-related pathway.' Science 300(5622): 1148-1151. Shen, R. R. and W. C. Hahn (2011). 'Emerging roles for the non-canonical IKKs in cancer.' Oncogene 30(6): 631-641. Shikanai, M., M. Yuzaki and T. Kawauchi (2018). 'Rab family small GTPases-mediated regulation of intracellular logistics in neural development.' Histol Histopathol 33(8): 765-771. Shimono, K., A. Fujimoto, T. Tsuyama, M. Yamamoto-Kochi, M. Sato, Y. Hattori, K. Sugimura, T. Usui, K. Kimura and T. Uemura (2009). 'Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death.' Neural Dev 4: 37. Sonnichsen, B., E. De Renzis S Fau - Nielsen, J. Nielsen E Fau - Rietdorf, M. Rietdorf J Fau - Zerial and M. Zerial (2000). 'Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11.' (0021-9525 (Print)). Takahashi, S., S. Kubo K Fau - Waguri, A. Waguri S Fau - Yabashi, H.-W. Yabashi A Fau - Shin, Y. Shin Hw Fau - Katoh, K. Katoh Y Fau - Nakayama and K. Nakayama (2012). 'Rab11 regulates exocytosis of recycling vesicles at the plasma membrane.' J Cell Sci(1477-9137 (Electronic)): 4049-4057. Williams, D. W., S. Kondo, A. Krzyzanowska, Y. Hiromi and J. W. Truman (2006). 'Local caspase activity directs engulfment of dendrites during pruning.' Nat Neurosci 9(10): 1234-1236. Williams, D. W. and J. W. Truman (2005). 'Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons.' Development 132(16): 3631-3642. Wong, R. O. and A. Ghosh (2002). 'Activity-dependent regulation of dendritic growth and patterning.' Nat Rev Neurosci 3(10): 803-812. Zhang, H., Y. Wang, J. J. Wong, K. L. Lim, Y. C. Liou, H. Wang and F. Yu (2014). 'Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.' Dev Cell 30(4): 463-478. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71331 | - |
dc.description.abstract | 神經系統的正常運作必須仰賴神經細胞之間精確地連結。當神經細胞發育時,神經樹突的多分支突起會廣泛地向外生長,以便於其他神經細胞產生聯繫,而神經細胞的樹突具有可塑性,其中樹突的自我修剪即是清除不再需要的樹突分支來達到精準的神經迴路。
果蠅的周邊感覺神經細胞,是最適合被用來觀察樹突自我修剪的模式生物,當果蠅進行完全變態的早期,其周邊感覺神經細胞會將所有的樹突分支清除乾淨,而細胞本體和軸突則是被保留下來,之後再生長出成蟲所需要的樹突分支。 在先前的研究中已知Ik2激酶是誘發樹突自我修剪中最重要的蛋白質,也找到具有螺旋區段的蛋白質Spn-F和Ik2有相互作用,並參與在樹突自我修剪的過程中。文獻回顧中指出,只有大量表現Ik2可以在幼蟲時期即誘發樹突自我修剪,因此我們想藉由研究Ik2的分子路徑,以及找出和Spn-F相互作用的蛋白質來了解樹突自我修剪的調控機制。 在本篇研究中,我們發現被Ik2所磷酸化的Spn-F必須藉由和動力蛋白(Dynein motor complex)以及Ik2形成複合體而得以散佈在神經細胞本體的細胞質中。當Spn-F沒有被磷酸化時,Spn-F會聚集成一團蛋白質聚合物在細胞質中。在果蠅進入完全變態的一小時後,Ik2的活性被蛻皮激素激發而將Spn-F磷酸化,使得Spn-F的自我蛋白質相互作用力減弱,由聚合物成為單體而散佈在細胞質中,Spn-F散佈在細胞質的過程是樹突進行自我修剪的重要調控機制。此外,我們發現小GTP酶Rab11和Spn-F有相互作用並參與在樹突自我修剪過程中。Rab11的活性對於樹突修剪非常重要,本實驗中發現,Spn-F會和沒有活性的Rab11相互作用,而Spn-F進一步能夠將Ik2和Rab11共同形成蛋白質複合物,此蛋白質複合物能夠促使Rab11的活性提高,最終使神經細胞正確地進行樹突自我修剪。 神經樹突自我修剪的過程除了參與神經細胞形成正確的神經迴路,也和退化性神經疾病的形成有相關,因此研究神經樹突自我修剪的調控機制,對於了解神經細胞的發育和神經系統疾病的發生都有很大幫助。 | zh_TW |
dc.description.abstract | The precise formation of neuronal connectivity contributes to functional nervous system. During dendrite morphogenesis, nerve processes extend broadly to make connections with relevant inputs and remodel to mature neuronal circuits. The remarkable neuronal remodeling is dendrite pruning which eliminates excessive dendrites but not induces cell death.
During Drosophila metamorphosis, the large-scale dendrite pruning occurs in Class IV dendritic arborization (C4da) neuron, which is the ideal model system for studying the molecular mechanisms of dendrite pruning. The previous study in our lab has revealed that IκB kinase-like 2 (Ik2), a homology of vertebrate IKKε in Drosophila, is crucial for dendrite pruning. This thesis characterized that Ik2 kinase regulates dendrite pruning through phosphorylating Spindle-F (Spn-F), the coiled-coil domain containing protein. Here, we found that Spn-F phosphorylation results in a reduced self-association and redistribution of Spn-F in soma of the C4da neuron during early metamorphosis. The redistribution of Spn-F is dependent on the functional dynein motor complex, a microtubule motor protein. While the Spn-F displays puncta pattern at larval stage, the small GTPase protein Rab11 co-localizes with Spn-F in C4da neurons. Rab11 is known to direct vesicle traffic between the endocytic and exocytic trafficking pathways. We found that Rab11 activity is required for the dendrite pruning. Spn-F has the strong affinity with GDP-bound Rab11 and links Ik2 with Rab11 to form Ik2/Spn-F/Rab11 complex. Consequently, exchange of GDP-bound Rab11 with GTP was enhanced. We revealed that elevation of Ik2 activity during early dendrite pruning induces Spn-F redistribution in a dynein complex dependent manner, and Spn-F serves as an adaptor to link Ik2 with Rab11 followed by increasing GTP-bound Rab11 which is required for dendrite pruning in Drosophila C4da neuron. It has been found that dendrite pruning occurs throughout the entire lifespan, not only involves in dendrite morphogenesis but also participates in the neurodegenerative disease. Understanding the molecular mechanism of dendrite pruning improves our knowledge of dendrite morphogenesis and progresses medical applications in neuronal disease. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:58:59Z (GMT). No. of bitstreams: 1 ntu-108-D99448008-1.pdf: 3866615 bytes, checksum: 10fe03491f4bd4fd6108b1fca60680fc (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書-i
誌謝------------------ii 中文摘要------------iii Abstract-------------iv Contents------------vi Introduction----------------------1 1. Dendrite pruning------------1 2. Dendrite pruning in Drosophila sensory neurons---2 3. Recent progress of dendrite pruning in Drosophila sensory C4da neurons---4 4. Ik2 kinase and Ik2 interaction protein, Spn-F--------6 5. Previous studies in our lab-------------------------------7 6. Spn-F association proteins, Ctp and Rab11---------8 Specific aims------------------10 Materials and methods------11 Results---------------------------27 1. Cytoplasmic dynein complex involves in redistribution of phosphorylated Spn-F during dendrite pruning--------27 a. Phosphorylation of Spn-F by Ik2 kinase in C4da neurons at 1 h APF--------27 b. Phosphorylation of Spn-F by Ik2 kinase decreases Spn-F self-association-28 c. Spn-F links Ik2 with dynein to form Ik2/Spn-F/dynein complex-----------------29 d. The dynein motor complex is critical for Spn-F redistribution during dendrite pruning------------------31 2. The association of Spn-F and Rab11 is important in dendrite pruning-----32 a. Spn-F forms complex with endogenous Rab11 in S2 cells---32 b. Active form of Rab11 is required for dendrite pruning----------33 c. Spn-F preferentially associates with GDP-bound Rab11-------34 d. Rab11 associates with phosphorylated or unphosphorylated Spn-F--------34 e. Generating the temperature sensitive mutations of Rab11 by CRISPR/Cas9 --------------------------------35 3. Ik2/Spn-F complex promotes dendrite pruning via increasing active form of Rab11----------------------36 a. Spn-F links Ik2 with Rab11 to form Ik2/Spn-F/Rab11 complex-------------36 b. Ik2/Spn-F/Rab11 complex promotes activation of Rab11--------------------37 c. The SCD domain of Spn-F is essential for the association with Rab11--38 d. The SCD domain of Spn-F is required for activation of Rab11 during dendrite pruning---------------------39 Discussion-----------------40 Reference------------------47 Figures----------------------54 Appendix--------------------78 | |
dc.language.iso | en | |
dc.title | 利用果蠅感覺神經元研究樹突自我修剪過程中Ik2激酶所調控的分子機制 | zh_TW |
dc.title | The Molecular Mechanism of the Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neuron | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen Lee),詹智強(Chih-Chiang Chan),劉雅雯(Ya-Wen Liu),薛一蘋(Hsueh, Yi-Ping) | |
dc.subject.keyword | 樹突自我修剪,神經可塑性,激?,動力蛋白,小分子 GTP ?, | zh_TW |
dc.subject.keyword | dendrite morphogenesis,neuron remodeling,dendrite pruning,Ik2,IKKε,Spindle-F,Spn-F,dynein light chain,ctp,Rab11, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201900558 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-02-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
Appears in Collections: | 分子醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf Restricted Access | 3.78 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.