請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林沛群 | |
dc.contributor.author | Yun-Meng Lin | en |
dc.contributor.author | 林筠萌 | zh_TW |
dc.date.accessioned | 2021-06-17T05:04:51Z | - |
dc.date.available | 2023-08-17 | |
dc.date.copyright | 2018-08-17 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-23 | |
dc.identifier.citation | [1] R. Bischoff, 'From research to products: The development of the KUKA Light-Weight Robot,' in 40th International Symposium on Robotics, Barcelona, Spain, 2009.
[2] A. Yamamoto, 'Softbank’s pepper robot makes emotional debut in japan (2014),' ed. [3] J. P. Grotzinger, J. Crisp, A. R. Vasavada, R. C. Anderson, C. J. Baker, R. Barry, et al., 'Mars Science Laboratory Mission and Science Investigation,' Space Science Reviews, vol. 170, pp. 5-56, September 01 2012. [4] D. J. Hyun, S. Seok, J. Lee, and S. Kim, 'High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,' The International Journal of Robotics Research, vol. 33, pp. 1417-1445, 2014. [5] M. Y. Chuah and S. Kim, 'Enabling force sensing during ground locomotion: A bio-inspired, multi-axis, composite force sensor using discrete pressure mapping,' IEEE Sensors Journal, vol. 14, pp. 1693-1703, 2014. [6] H.-W. Park, S. Park, and S. Kim, 'Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3d running of mit cheetah 2,' in 2015 IEEE international conference on Robotics and automation (ICRA), 2015, pp. 5163-5170. [7] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and T. B. Team, 'Bigdog, the rough-terrain quadruped robot,' in Proceedings of the 17th world congress, 2008, pp. 10822-10825. [8] C. Semini, 'HyQ—Design and development of a hydraulically actuated quadruped robot,' Doctor of Philosophy (Ph. D.), University of Genoa, Italy, 2010. [9] S. Hirose, K. Yoneda, and H. Tsukagoshi, 'TITAN VII: Quadruped walking and manipulating robot on a steep slope,' in IEEE International Conference on Robotics and Automation, 1997, pp. 494-500. [10] K. D. Iagnemma, A. Rzepniewski, S. Dubowsky, P. Pirjanian, T. L. Huntsberger, and P. S. Schenker, 'Mobile robot kinematic reconfigurability for rough terrain,' in Intelligent Systems and Smart Manufacturing, 2000, pp. 413-420. [11] P. J. Lewis, N. Flann, M. R. Torrie, E. A. Poulson, T. Petroff, and G. Witus, 'Chaos, an intelligent ultra-mobile SUGV: combining the mobility of wheels, tracks, and legs,' 2005, pp. 427-438. [12] R. T. Schroer, M. J. Boggess, R. J. Bachmann, R. D. Quinn, and R. E. Ritzmann, 'Comparing cockroach and Whegs robot body motions,' in 2004 IEEE International Conference on Robotics and Automation, 2004, pp. 3288-3293 Vol.4. [13] U. Saranli, M. Buehler, and D. E. Koditschek, 'RHex: A Simple and Highly Mobile Hexapod Robot,' The International Journal of Robotics Research, vol. 20, pp. 616-631, 2001. [14] Y. C. Chou, W. S. Yu, K. J. Huang, and P. C. Lin, 'Bio-inspired step crossing algorithm for a hexapod robot,' in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 1493-1498. [15] C. K. Huang, K. J. Huang, and P. C. Lin, 'Rolling SLIP model based running on a hexapod robot,' in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5608-5614. [16] G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere, et al., 'A visually guided swimming robot,' in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 3604-3609. [17] S. C. Chen, K. J. Huang, W. H. Chen, S. Y. Shen, C. H. Li, and P. C. Lin, 'Quattroped: A Leg--Wheel Transformable Robot,' IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 730-742, 2014. [18] W.-H. Chen, H.-S. Lin, Y.-M. Lin, and P.-C. Lin, 'TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions,' IEEE Transactions on Robotics, 2017. [19] R. M. Alexander, Elastic mechanisms in animal movement Cambridge University Press 1988. [20] P. Holmes, R. J. Full, D. E. Koditschek, and J. Guckenheimer, 'The dynamics of legged locomotion: Models, analyses, and challenges,' Siam Review, vol. 48, pp. 207-304, Jun 2006. [21] R. Blickhan and R. J. Full, 'Similarity in multilegged locomotion: Bouncing like a monopode,' Journal of Comparative Physiology A, vol. 173, pp. 509-517, 1993. [22] R. J. Full and D. E. Koditschek, 'Templates and anchors: neuromechanical hypotheses of legged locomotion on land,' Journal of Experimental Biology, vol. 202, pp. 3325-3332, 1999. [23] M. M. Ankaralı and U. Saranlı, 'Control of underactuated planar pronking through an embedded spring-mass hopper template,' Autonomous Robots, vol. 30, pp. 217-231, 2011. [24] M. Hutter, C. D. Remy, M. A. Höpflinger, and R. Siegwart, 'Slip running with an articulated robotic leg,' in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 4934-4939. [25] R. Altendorfer, D. E. Koditschek, and P. Holmes, 'Stability Analysis of a Clock-Driven Rigid-Body SLIP Model for RHex,' The International Journal of Robotics Research, vol. 23, pp. 1001-1012, 2004. [26] I. Poulakakis and J. W. Grizzle, 'The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper,' IEEE Transactions on Automatic Control, vol. 54, pp. 1779-1793, 2009. [27] J. W. Hurst and A. A. Rizzi, 'Series compliance for an efficient running gait,' IEEE Robotics & Automation Magazine, vol. 15, pp. 42-51, 2008. [28] D. Koepl and J. Hurst, 'Force control for planar spring-mass running,' in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 3758-3763. [29] A. Hereid, S. Kolathaya, M. S. Jones, J. Van Why, J. W. Hurst, and A. D. Ames, 'Dynamic multi-domain bipedal walking with atrias through slip based human-inspired control,' in Proceedings of the 17th international conference on Hybrid systems: computation and control, 2014, pp. 263-272. [30] J. Y. Jun and J. E. Clark, 'Effect of rolling on running performance,' in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 2009-2014. [31] M. M. Ankarali, N. J. Cowan, and U. Saranli, 'TD-SLIP: A better predictive model for human running,' Proceedings of Dynamic Walking, 2012. [32] K. J. Huang and P. C. Lin, 'Rolling SLIP: A model for running locomotion with rolling contact,' in 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2012, pp. 21-26. [33] C. K. Huang, C. L. Chen, C. J. Hu, and P. C. Lin, 'Model-based bounding on a quadruped robot,' in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3576-3581. [34] T. A. McMahon and G. C. Cheng, 'The mechanics of running: How does stiffness couple with speed?,' Journal of Biomechanics, vol. 23, pp. 65-78, 1990. [35] D. P. Ferris, M. Louie, and C. T. Farley, 'Running in the real world: adjusting leg stiffness for different surfaces,' Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 265, pp. 989-994, 1998. [36] C. T. Farley and O. Gonzalez, 'Leg stiffness and stride frequency in human running,' Journal of biomechanics, vol. 29, pp. 181-186, 1996. [37] A. Seyfarth, H. Geyer, M. Günther, and R. Blickhan, 'A movement criterion for running,' Journal of biomechanics, vol. 35, pp. 649-655, 2002. [38] H. Geyer, A. Seyfarth, and R. Blickhan, 'Spring-mass running: simple approximate solution and application to gait stability,' Journal of Theoretical Biology, vol. 232, pp. 315-328, 2005. [39] J. Rummel and A. Seyfarth, 'Stable running with segmented legs,' The International Journal of Robotics Research, vol. 27, pp. 919-934, 2008. [40] J. W. Hurst, J. E. Chestnutt, and A. A. Rizzi, 'An actuator with physically variable stiffness for highly dynamic legged locomotion,' in 2004 IEEE International Conference on Robotics and Automation, 2004, pp. 4662-4667. [41] B. D. Miller, D. Cartes, and J. E. Clark, 'Leg stiffness adaptation for running on unknown terrains,' in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 5108-5113. [42] K. C. Galloway, J. E. Clark, and D. E. Koditschek, 'Variable stiffness legs for robust, efficient, and stable dynamic running,' Journal of Mechanisms and Robotics, vol. 5, p. 011009, 2013. [43] K. C. Galloway, J. E. Clark, M. Yim, and D. E. Koditschek, 'Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion,' in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1243-1249. [44] W. Bosworth, S. Kim, and N. Hogan, 'The effect of leg impedance on stability and efficiency in quadrupedal trotting,' in 2014 IEEE/RSJ international conference on Intelligent robots and systems (IROS), 2014, pp. 4895-4900. [45] W. Bosworth, J. Whitney, S. Kim, and N. Hogan, 'Robot locomotion on hard and soft ground: Measuring stability and ground properties in-situ,' in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 3582-3589. [46] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy, and R. Siegwart, 'StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion,' in 15th International Conference on Climbing and Walking Robot-CLAWAR 2012, 2012. [47] 陳為熙, '輪腳快速變換平台及其仿生控制架構之開發,' 國立臺灣大學機械工程學研究所, 2013. [48] 林紘生, '輪腳複合機器人之動態步態與越障姿態調控,' 國立臺灣大學機械工程學研究所, 2015. [49] I. Poulakakis, 'On the passive dynamics of quadrupedal running,' McGill University, Montreal, Canada, 2002. [50] R. Blickhan, 'The spring-mass model for running and hopping,' Journal of biomechanics, vol. 22, pp. 1217-1227, 1989. [51] M. Ernst, H. Geyer, and R. Blickhan, 'Extension and customization of self-stability control in compliant legged systems,' Bioinspiration & biomimetics, vol. 7, p. 046002, 2012. [52] T. M. Griffin, R. Kram, S. J. Wickler, and D. F. Hoyt, 'Biomechanical and energetic determinants of the walk–trot transition in horses,' Journal of Experimental Biology, vol. 207, pp. 4215-4223, 2004. [53] R. Alexander, 'Optimization and gaits in the locomotion of vertebrates,' Physiological reviews, vol. 69, pp. 1199-1227, 1989. [54] G. Endo and S. Hirose, 'Study on roller-walker-energy efficiency of roller-walk,' in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 5050-5055. [55] J. A. Smith, I. Poulakakis, M. Trentini, and I. Sharf, 'Bounding with active wheels and liftoff angle velocity adjustment,' The International Journal of Robotics Research, vol. 29, pp. 414-427, 2010. [56] D. Campbell and M. Buehler, 'Preliminary bounding experiments in a dynamic hexapod,' Experimental Robotics VIII, pp. 612-621, 2003. [57] P. M. Wensing and D. E. Orin, 'High-speed humanoid running through control with a 3D-SLIP model,' in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 5134-5140. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71321 | - |
dc.description.abstract | 多足機器人由於具有穩定行走及優越的越障能力等特色,在機器人界是ㄧ項熱門的研究主題,其中力控制策略為各研究團隊近幾年來特別著重的項目,因力控制比起位置控制能夠有較高的誤差容忍度,能夠使運動更加強健。
本研究目的在於為實驗室第二代輪腳複合機器人TurboQuad開發合適的動態步態行為並檢視其各項運動表現。本研究所採用的動態行為開發策略為model-based控制方法,所選用的模型為SLIP (spring-loaded inverted pendulum)模型。首先以一外力估測模型估測外力並以力控制方式使機器人雙自由度輪腳中的徑向自由度表現出如同被動彈簧般的效果,以模擬SLIP模型中的彈簧表現。同時探討適合機器人運作之狀態參數,為其開發能夠快速運動的動態行為如小跑步態(trotting)及彈跳步態(pronking)。接著探討SLIP中各參數對軌跡之影響以作為選擇軌跡的參考,並探討機器人在兩穩定操作點間轉移的可能性。除此之外,本研究同時利用電流控制的方式為TurboQuad開發出垂直跳之能力,提供另一種力控制的可能性。 本研究保留TurboQuad原先之中樞模式產生器控制架構(Central Pattern Generator, CPG),以維持其輪腳變換之能力。同時將CPG架構與model-based control兩種控制方法結合,並升級機電系統使其足以負荷機器人豐富的各項行為表現。本研究也規劃了機器人在轉向時之軌跡,以差速設計減少打滑現象。並對機器人之各項運動表現以定性或定量實驗方法進行評估,如運動時的能量效率、越障能力、運動穩定度,探討其優勢及限制,以供之後改版設計參考。 | zh_TW |
dc.description.abstract | Multi-legged robots are one of the most popular topics in robotics owing to their ability to move stably and their superior obstacle negotiation. In recent years, most research teams have put their emphasis on force control strategies because they allow the robot to tolerate greater error compared to position control, and therefore make the motion more robust. The purpose of this thesis is to develop dynamic gaits for a leg-wheel transformable robot, TurboQuad, and evaluate its motion performance. Model-based control is used and the SLIP (spring-loaded inverted pendulum) model is chosen. A force control method is developed to make the translational degree of freedom of the leg-wheel perform spring-like motion to match the spring in the SLIP model. Parameters of the SLIP model that suit the robot are searched for, to initiate dynamic gaits such as trotting and pronking. Then the effects of these parameters are discussed to build the basis for choosing suitable trajectories. The ability to transition between two stable operation points is also developed. Besides, hopping behavior is accomplished by current control.
The original control structure of TurboQuad is preserved (i.e. Central Pattern Generator) and combined with model-based control. The mechatronic system is upgraded to meet the requirements for the robot to perform versatile behaviors. A turning strategy is developed and differential steering is used to reduce slippage. The performance of the robot in terms of energy efficiency, obstacle negotiation ability and motion smoothness are also evaluated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T05:04:51Z (GMT). No. of bitstreams: 1 ntu-107-R04522808-1.pdf: 10822474 bytes, checksum: 01056aee1ce23c0c88cfac2e0de10de6 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 2 1.4 貢獻 6 1.5 論文架構 6 第二章 實驗平台 7 2.1 輪腳複合四足機器人TurboQuad 7 2.2 硬體架構 7 2.2.1 輪腳模組 7 2.2.2 轉向機構 8 2.2.3 直線腳 10 2.3 機電系統 11 2.3.1 處理器及訊號截取模組 11 2.3.2 馬達驅動器 13 第三章 控制架構 15 3.1 轉彎軌跡規劃 16 3.1.1 輪模式 18 3.1.2 腳模式 18 3.2 Model-based 控制 20 3.2.1 前言 20 3.2.2 SLIP 模型 21 3.2.3 模型與機器人之映射關係 30 3.2.4 機器人軌跡規劃 37 3.2.5 各操作點間的轉移 38 3.3 電流控制架構 41 3.3.1 外力估測模型 41 3.3.2 單向電控彈簧 43 3.4 垂直跳控制策略 44 第四章 實驗 46 4.1 轉向實驗 46 4.2 能量效率實驗 49 4.3 爬階實驗與平穩度測試 52 4.4 動態實驗 53 4.4.1 靜態負載實驗 53 4.4.2 動態步態實驗 54 4.4.3 穩定點間的轉換 59 4.5 垂直跳實驗 66 4.5.1 電流與出力之關係 66 4.5.2 垂直跳實驗 67 第五章 結論與未來展望 74 參考文獻 76 | |
dc.language.iso | zh-TW | |
dc.title | 基於力控制之輪腳複合機器人動態步態生成 | zh_TW |
dc.title | Dynamic Gait Generation for a Leg-Wheel Transformable Robot Based on Force Control | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃光裕,顏炳郎,連豊力 | |
dc.subject.keyword | 仿生機器人,四足機器人,動態步態,模型基礎控制,力控制,電流控制, | zh_TW |
dc.subject.keyword | bio-inspired robot,quadruped robot,dynamic gaits,model-based control,force control,current control, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201702396 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-23 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 10.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。