Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮信(Dr. Jung-Hsin Lin)
dc.contributor.authorDhananjay C. Joshien
dc.contributor.author達南杰zh_TW
dc.date.accessioned2021-06-17T05:04:45Z-
dc.date.available2019-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-23
dc.identifier.citation[1] Jeremy M Berg, J. L. T., and L. Stryer, 2002. Biochemistry. New York: W H
Freeman; 2002., 5th edition.
[2] Nooren, I. M. A., and J. M. Thornton, 2003. Diversity of protein–protein
interactions. The EMBO journal 22:3486–3492.
[3] Moreira, I. S., P. A. Fernandes, and M. J. Ramos, 2007. Hot spots—A review
of the protein–protein interface determinant amino‐acid residues. Proteins:
Structure, Function, and Bioinformatics 68:803–812.
[4] Lua, R. C., D. C. Marciano, P. Katsonis, A. K. Adikesavan, A. D. Wilkins, and
O. Lichtarge, 2014. Prediction and redesign of protein–protein interactions.
Progress in biophysics and molecular biology 116:194–202.
[5] Scott, D. E., A. R. Bayly, C. Abell, and J. Skidmore, 2016. Small molecules,
big targets: drug discovery faces the protein-protein interaction challenge.
Nature Reviews Drug Discovery 15:533–550.
[6] Lazarus, R. A., and F. Scheiflinger, 2017. Mining ancient proteins for nextgeneration
drugs. Nature Biotechnology 35:28–29.
[7] Perrin, F., 1926. Polarisation de la lumière de fluorescence. Vie moyenne des
molécules dans l’etat excité. Journal de Physique et le Radium 7:390–401.
[8] Cowieson, N. P., A. J. Miles, G. Robin, J. K. Forwood, B. Kobe, J. L. Martin,
and B. A. Wallace, 2008. Evaluating protein: protein complex formation using
114
doi:10.6342/NTU201801603
synchrotron radiation circular dichroism spectroscopy. Proteins: Structure,
Function, and Bioinformatics 70:1142–1146.
[9] Wallace, B. A., and R. W. Janes, 2010. Synchrotron radiation circular dichroism
(SRCD) spectroscopy: an enhanced method for examining protein conformations
and protein interactions. Biochemical Society Transactions 38:861–
873.
[10] Murphy, R. M., 1997. Static and dynamic light scattering of biological macromolecules:
what can we learn? Current Opinion in Biotechnology 8:25–30.
[11] Some, D., 2013. Light-scattering-based analysis of biomolecular interactions.
Biophysical reviews 5:147–158.
[12] Liu, J., J. D. Andya, and S. J. Shire, 2006. A critical review of analytical
ultracentrifugation and field flow fractionation methods for measuring protein
aggregation. The AAPS journal 8:E580–E589.
[13] Cole, J. L., J. W. Lary, T. P. Moody, and T. M. Laue, 2008. Analytical ultracentrifugation:
sedimentation velocity and sedimentation equilibrium. Methods
in cell biology 84:143–179.
[14] Wishart, D. S., B. D. Sykes, and F. M. Richards, 1991. Relationship between
nuclear magnetic resonance chemical shift and protein secondary structure.
Journal of molecular biology 222:311–333.
[15] Hass, M. A., and M. Ubbink, 2014. Structure determination of protein–protein
complexes with long-range anisotropic paramagnetic NMR restraints. Current
opinion in structural biology 24:45–53.
[16] Göbl, C., T. Madl, B. Simon, and M. Sattler, 2014. NMR approaches for structural
analysis of multidomain proteins and complexes in solution. Progress in
nuclear magnetic resonance spectroscopy 80:26–63.
115
doi:10.6342/NTU201801603
[17] Chayen, N. E., and E. Saridakis, 2008. Protein crystallization: from purified
protein to diffraction-quality crystal. Nature methods 5:147.
[18] Garman, E. F., 2014. Developments in x-ray crystallographic structure determination
of biological macromolecules. Science 343:1102–1108.
[19] Pierce, M. M., C. Raman, and B. T. Nall, 1999. Isothermal titration calorimetry
of protein–protein interactions. Methods 19:213–221.
[20] Liedberg, B., C. Nylander, and I. Lunström, 1983. Surface plasmon resonance
for gas detection and biosensing. Sensors and actuators 4:299–304.
[21] Isothermal Titration Calorimetry. https://www.
malvernpanalytical.com/en/products/technology/microcalorimetry/
isothermal-titration-calorimetry. Accessed: 2018-06-05.
[22] Homola, J., S. S. Yee, and G. Gauglitz, 1999. Surface plasmon resonance
sensors. Sensors and Actuators B: Chemical 54:3–15.
[23] Sabban, S., 2011. Development of an in vitro model system for studying the
interaction of Equus caballus IgE with its high-affinity Fc#RI receptor. Ph.D.
thesis, The University of Sheffield.
[24] Wells, J. A., and C. L. McClendon, 2007. Reaching for high-hanging fruit in
drug discovery at protein–protein interfaces. Nature 450:1001.
[25] Fuller, J. C., N. J. Burgoyne, and R. M. Jackson, 2009. Predicting druggable
binding sites at the protein–protein interface. Drug discovery today 14:155–
161.
[26] Eyrisch, S., and V. Helms, 2007. Transient pockets on protein surfaces involved
in protein- protein interaction. Journal of medicinal chemistry 50:3457–3464.
[27] Brown, S. P., and P. J. Hajduk, 2006. Effects of conformational dynamics on
predicted protein druggability. ChemMedChem 1:70–72.
116
doi:10.6342/NTU201801603
[28] Hansen, N., and W. F. Van Gunsteren, 2014. Practical Aspects of Free-
Energy Calculations: A Review. Journal of Chemical Theory and Computation
10:2632–2647.
[29] Reif, F., 1965. Fundamentals of statistical mechanics.
[30] Tuckerman, M., 2010. Statistical mechanics: theory and molecular simulation.
Oxford University Press.
[31] Chipot, C., 2014. Frontiers in free-energy calculations of biological systems.
Wiley Interdisciplinary Reviews: Computational Molecular Science 4:71–89.
[32] Hartley, R. W., 1989. Barnase and barstar: two small proteins to fold and fit
together. Trends in biochemical sciences 14:450–454.
[33] Hartley, R. W., and J. R. Smeaton, 1973. On the reaction between the extracellular
ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular
inhibitor (barstar). Journal of Biological Chemistry 248:5624–5626.
[34] Buckle, A. M., G. Schreiber, and A. R. Fersht, 1994. Protein-protein recognition:
Crystal structural analysis of a barnase-barstar complex at 2.0-. ANG.
resolution. Biochemistry 33:8878–8889.
[35] Frisch, C., G. Schreiber, C. M. Johnson, and a. R. Fersht, 1997. Thermodynamics
of the interaction of barnase and barstar: changes in free energy versus
changes in enthalpy on mutation. Journal of molecular biology 267:696–706.
[36] Case, D. A., T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz,
A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, 2005. The Amber
biomolecular simulation programs. Journal of computational chemistry
26:1668–1688.
[37] Salomon-Ferrer, R., A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker,
2013. Routine Microsecond Molecular Dynamics Simulations with AMBER on
117
doi:10.6342/NTU201801603
GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory
and Computation 9:3878–3888.
[38] Salomon‐Ferrer, R., D. A. Case, and R. C. Walker, 2013. An overview of
the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews:
Computational Molecular Science 3:198–210.
[39] Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and
C. Simmerling, 2015. ff14SB: Improving the Accuracy of Protein Side Chain
and Backbone Parameters from ff99SB. Journal of Chemical Theory and
Computation 11:3696–3713.
[40] Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt,
E. C. Meng, and T. E. Ferrin, 2004. UCSF Chimera—A visualization system
for exploratory research and analysis. Journal of Computational Chemistry
25:1605–1612.
[41] DeLano, W. L., 2002. The PyMOL molecular graphics system .
[42] Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon, 2001.
Electrostatics of nanosystems: Application to microtubules and the ribosome.
Proceedings of the National Academy of Sciences 98:10037–10041.
[43] Gabdoulline, R. R., and R. C. Wade, 1997. Simulation of the diffusional
association of barnase and barstar. Biophysical journal 72:1917–1929.
[44] Gabdoulline, R. R., and R. C. Wade, 2001. Protein-protein association: investigation
of factors influencing association rates by Brownian dynamics simulations1.
Journal of molecular biology 306:1139–1155.
[45] Spaar, A., and V. Helms, 2005. Free energy landscape of protein- protein
encounter resulting from Brownian Dynamics simulations of Barnase: Barstar.
Journal of chemical theory and computation 1:723–736.
118
doi:10.6342/NTU201801603
[46] Spaar, A., C. Dammer, R. R. Gabdoulline, R. C. Wade, and V. Helms, 2006.
Diffusional encounter of barnase and barstar. Biophysical journal 90:1913–
1924.
[47] Ahmad, M., W. Gu, T. Geyer, and V. Helms, 2011. Adhesive water networks
facilitate binding of protein interfaces. Nature communications 2:261.
[48] Plattner, N., S. Doerr, G. De Fabritiis, and F. Noé, 2017. Complete protein–
protein association kinetics in atomic detail revealed by molecular dynamics
simulations and Markov modelling. Nature chemistry 9:1005.
[49] Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee,
T. Lee, Y. Duan, and W. Wang, 2000. Calculating structures and free energies
of complex molecules: combining molecular mechanics and continuum models.
Accounts of chemical research 33:889–897.
[50] Wang, J., P. Morin, W. Wang, and P. A. Kollman, 2001. Use of MM-PBSA
in reproducing the binding free energies to HIV-1 RT of TIBO derivatives
and predicting the binding mode to HIV-1 RT of efavirenz by docking and
MM-PBSA. Journal of the American Chemical Society 123:5221–5230.
[51] Hou, T., J. Wang, Y. Li, and W. Wang, 2010. Assessing the performance of the
MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy
calculations based on molecular dynamics simulations. Journal of chemical
information and modeling 51:69–82.
[52] Kuhn, B., P. Gerber, T. Schulz-Gasch, and M. Stahl, 2005. Validation and use
of the MM-PBSA approach for drug discovery. Journal of medicinal chemistry
48:4040–4048.
[53] Rastelli, G., A. D. Rio, G. Degliesposti, and M. Sgobba, 2010. Fast and
accurate predictions of binding free energies using MM-PBSA and MM-GBSA.
Journal of computational chemistry 31:797–810.
119
doi:10.6342/NTU201801603
[54] Kongsted, J., and U. Ryde, 2009. An improved method to predict the entropy
term with the MM/PBSA approach. Journal of computer-aided molecular
design 23:63.
[55] Xu, L., H. Sun, Y. Li, J. Wang, and T. Hou, 2013. Assessing the performance
of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and
ligand charge models. The Journal of Physical Chemistry B 117:8408–8421.
[56] Sun, H., Y. Li, S. Tian, L. Xu, and T. Hou, 2014. Assessing the performance
of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and
MM/GBSA methodologies evaluated by various simulation protocols using
PDBbind data set. Physical Chemistry Chemical Physics 16:16719–16729.
[57] Genheden, S., and U. Ryde, 2015. The MM/PBSA and MM/GBSA methods
to estimate ligand-binding affinities. Expert Opinion on Drug Discovery
10:449–461.
[58] Tiwary, P., J. Mondal, J. A. Morrone, and B. Berne, 2015. Role of water and
steric constraints in the kinetics of cavity–ligand unbinding. Proceedings of
the National Academy of Sciences 112:12015–12019.
[59] Forli, S., R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson,
2016. Computational protein–ligand docking and virtual drug screening with
the AutoDock suite. Nature protocols 11:905.
[60] Åqvist, J., C. Medina, and J.-E. Samuelsson, 1994. A new method for predicting
binding affinity in computer-aided drug design. Protein Engineering,
Design and Selection 7:385–391.
[61] Almlöf, M., J. Carlsson, and J. Åqvist, 2007. Improving the accuracy of
the linear interaction energy method for solvation free energies. Journal of
chemical theory and computation 3:2162–2175.
120
doi:10.6342/NTU201801603
[62] Wang, W., J. Wang, and P. A. Kollman, 1999. What determines the van
der waals coefficient b in the LIE (linear interaction energy) method to estimate
binding free energies using molecular dynamics simulations? Proteins:
Structure, Function, and Bioinformatics 34:395–402.
[63] Almlöf, M., B. O. Brandsdal, and J. Åqvist, 2004. Binding affinity prediction
with different force fields: examination of the linear interaction energy method.
Journal of computational chemistry 25:1242–1254.
[64] Christ, C. D., A. E. Mark, and W. F. Van Gunsteren, 2010. Basic ingredients
of free energy calculations: a review. Journal of computational chemistry
31:1569–1582.
[65] Fenley, A. T., N. M. Henriksen, H. S. Muddana, and M. K. Gilson, 2014. Bridging
calorimetry and simulation through precise calculations of cucurbituril–
guest binding enthalpies. Journal of chemical theory and computation 10:4069–
4078.
[66] Tembre, B. L., and J. A. Mc Cammon, 1984. Ligand-receptor interactions.
Computers & Chemistry 8:281–283.
[67] Shirts, M. R., D. L. Mobley, and J. D. Chodera, 2007. Chapter 4 Alchemical
Free Energy Calculations: Ready for Prime Time? In Annual Reports in
Computational Chemistry, Elsevier, volume 3, 41–59.
[68] Chodera, J. D., D. L. Mobley, M. R. Shirts, R. W. Dixon, K. Branson,
and V. S. Pande, 2011. Alchemical free energy methods for drug discovery:
progress and challenges. Current Opinion in Structural Biology 21:150–160.
[69] Zwanzig, R. W., 1954. High‐temperature equation of state by a perturbation
method. I. nonpolar gases. The Journal of Chemical Physics 22:1420–1426.
[70] Kirkwood, J. G., 1935. Statistical mechanics of fluid mixtures. The Journal
of Chemical Physics 3:300–313.
121
doi:10.6342/NTU201801603
[71] Straatsma, T. P., and J. A. McCammon, 1991. Multiconfiguration thermodynamic
integration. The Journal of chemical physics 95:1175–1188.
[72] Torrie, G. M., and J. P. Valleau, 1977. Nonphysical sampling distributions in
Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational
Physics 23:187–199.
[73] Jarzynski, C., 1997. Nonequilibrium Equality for Free Energy Differences.
Physical Review Letters 78:2690–2693.
[74] Darve, E., M. A. Wilson, and A. Pohorille, 2002. Calculating free energies
using a scaled-force molecular dynamics algorithm. Molecular Simulation
28:113–144.
[75] Laio, A., and M. Parrinello, 2002. Escaping free-energy minima. Proceedings
of the National Academy of Sciences 99:12562–12566.
[76] Doudou, S., N. A. Burton, and R. H. Henchman, 2009. Standard free energy of
binding from a one-dimensional potential of mean force. Journal of Chemical
Theory and Computation 5:909–918.
[77] Radial Distribution Function. https://en.wikipedia.org/wiki/Radial_
distribution_function. Accessed: 2018-06-01.
[78] Andrew, R. L., 2001. Molecular modeling principles and applications. 2nd,
editor.: Pearson Education Limited .
[79] Allen, R. J., C. Valeriani, and P. R. ten Wolde, 2009. Forward flux sampling
for rare event simulations. Journal of physics: Condensed matter 21:463102.
[80] Escobedo, F. A., E. E. Borrero, and J. C. Araque, 2009. Transition path sampling
and forward flux sampling. Applications to biological systems. Journal
of Physics: Condensed Matter 21:333101.
122
doi:10.6342/NTU201801603
[81] Bernardi, R. C., M. C. Melo, and K. Schulten, 2015. Enhanced sampling techniques
in molecular dynamics simulations of biological systems. Biochimica et
Biophysica Acta (BBA)-General Subjects 1850:872–877.
[82] Miao, Y., V. A. Feher, and J. A. McCammon, 2015. Gaussian accelerated
molecular dynamics: Unconstrained enhanced sampling and free energy calculation.
Journal of chemical theory and computation 11:3584–3595.
[83] Pan, A. C., T. M. Weinreich, S. Piana, and D. E. Shaw, 2016. Demonstrating
an order-of-magnitude sampling enhancement in molecular dynamics simulations
of complex protein systems. Journal of chemical theory and computation
12:1360–1367.
[84] Park, S., F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten, 2003. Free energy
calculation from steered molecular dynamics simulations using Jarzynski’s
equality. The Journal of chemical physics 119:3559–3566.
[85] Park, S., and K. Schulten, 2004. Calculating potentials of mean force from
steered molecular dynamics simulations. The Journal of chemical physics
120:5946–5961.
[86] Neumann, J., and K.-E. Gottschalk, 2009. The Effect of Different Force Applications
on the Protein-Protein Complex Barnase-Barstar. Biophysical Journal
97:1687–1699.
[87] Grubmüller, H., B. Heymann, and P. Tavan, 1996. Ligand binding: molecular
mechanics calculation of the streptavidin-biotin rupture force. Science
271:997–999.
[88] Kingsley, L. J., J. Esquivel-Rodríguez, Y. Yang, D. Kihara, and M. A. Lill,
2016. Ranking protein–protein docking results using steered molecular dynamics
and potential of mean force calculations. Journal of Computational
Chemistry 37:1861–1865.
123
doi:10.6342/NTU201801603
[89] Barducci, A., M. Bonomi, and M. Parrinello, 2011. Metadynamics. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 1:826–843.
[90] Ensing, B., A. Laio, M. Parrinello, and M. L. Klein, 2005. A recipe for the
computation of the free energy barrier and the lowest free energy path of
concerted reactions. The journal of physical chemistry B 109:6676–6687.
[91] Ensing, B., and M. L. Klein, 2005. Perspective on the reactions between
F–and CH3CH2F: The free energy landscape of the E2 and SN2 reaction
channels. Proceedings of the National Academy of Sciences of the United
States of America 102:6755–6759.
[92] Fiorin, G., A. Pastore, P. Carloni, and M. Parrinello, 2006. Using metadynamics
to understand the mechanism of calmodulin/target recognition at atomic
detail. Biophysical journal 91:2768–2777.
[93] Bonomi, M., F. L. Gervasio, G. Tiana, D. Provasi, R. A. Broglia, and M. Parrinello,
2007. Insight into the folding inhibition of the HIV-1 protease by a
small peptide. Biophysical journal 93:2813–2821.
[94] Hénin, J., and C. Chipot, 2004. Overcoming free energy barriers using unconstrained
molecular dynamics simulations. The Journal of Chemical Physics
121:2904–2914.
[95] Gumbart, J. C., B. Roux, and C. Chipot, 2013. Efficient determination of
protein–protein standard binding free energies from first principles. Journal
of Chemical Theory and Computation 9:3789–3798.
[96] Gumbart, J. C., B. Roux, and C. Chipot, 2013. Standard Binding Free Energies
from Computer Simulations: What Is the Best Strategy? Journal of
Chemical Theory and Computation 9:794–802.
[97] Hamelberg, D., J. Mongan, and J. A. McCammon, 2004. Accelerated molec-
124
doi:10.6342/NTU201801603
ular dynamics: a promising and efficient simulation method for biomolecules.
The Journal of chemical physics 120:11919–11929.
[98] Shen, T., and D. Hamelberg, 2008. A statistical analysis of the precision of
reweighting-based simulations. The Journal of chemical physics 129:034103.
[99] de Oliveira, C. A. F., D. Hamelberg, and J. A. McCammon, 2008. Coupling accelerated
molecular dynamics methods with thermodynamic integration simulations.
Journal of chemical theory and computation 4:1516–1525.
[100] Wereszczynski, J., and J. A. McCammon, 2010. Using selectively applied
accelerated molecular dynamics to enhance free energy calculations. Journal
of chemical theory and computation 6:3285–3292.
[101] Fajer, M., D. Hamelberg, and J. A. McCammon, 2008. Replica-exchange
accelerated molecular dynamics (REXAMD) applied to thermodynamic integration.
Journal of chemical theory and computation 4:1565–1569.
[102] Markwick, P. R., L. C. Pierce, D. B. Goodin, and J. A. McCammon, 2011.
Adaptive accelerated molecular dynamics (Ad-AMD) revealing the molecular
plasticity of P450cam. The journal of physical chemistry letters 2:158–164.
[103] Miao, Y., Y.-m. M. Huang, R. C. Walker, J. A. McCammon, and C.-e. A.
Chang, 2018. Ligand binding pathways and conformational transitions of the
HIV protease. Biochemistry 57:1533–1541.
[104] Miao, Y., and J. A. McCammon, 2018. Mechanism of the G-protein mimetic
nanobody binding to a muscarinic G-protein-coupled receptor. Proceedings of
the National Academy of Sciences 201800756.
[105] Sinko, W., Y. Miao, C. A. F. de Oliveira, and J. A. McCammon, 2013. Population
based reweighting of scaled molecular dynamics. The Journal of Physical
Chemistry B 117:12759–12768.
125
doi:10.6342/NTU201801603
[106] Miao, Y., W. Sinko, L. Pierce, D. Bucher, R. C. Walker, and J. A. McCammon,
2014. Improved reweighting of accelerated molecular dynamics simulations for
free energy calculation. Journal of chemical theory and computation 10:2677–
2689.
[107] Zhang, Y., and G. A. Voth, 2011. Combined Metadynamics and Umbrella
Sampling Method for the Calculation of Ion Permeation Free Energy Profiles.
Journal of Chemical Theory and Computation 7:2277–2283.
[108] Kästner, J., 2011. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational
Molecular Science 1:932–942.
[109] Grossfield, A., 2012. WHAM: the weighted histogram analysis method. version
2:6.
[110] Kästner, J., and W. Thiel, 2005. Bridging the gap between thermodynamic integration
and umbrella sampling provides a novel analysis method: “Umbrella
integration”. The Journal of Chemical Physics 123:144104.
[111] Kumar, S., J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman,
1992. The weighted histogram analysis method for free-energy calculations on
biomolecules. I. The method. Journal of computational chemistry 13:1011–
1021.
[112] Ferrenberg, A. M., and R. H. Swendsen, 1988. New Monte Carlo technique
for studying phase transitions. Physical review letters 61:2635.
[113] Hub, J. S., B. L. de Groot, and D. van der Spoel, 2010. g_wham-A Free
Weighted Histogram Analysis Implementation Including Robust Error and
Autocorrelation Estimates. Journal of Chemical Theory and Computation
6:3713–3720.
[114] Kästner, J., and W. Thiel, 2006. Analysis of the statistical error in umbrella
126
doi:10.6342/NTU201801603
sampling simulations by umbrella integration. The Journal of chemical physics
124:234106.
[115] Lee, M. S., and M. A. Olson, 2006. Calculation of absolute protein-ligand
binding affinity using path and endpoint approaches. Biophysical Journal
90:864–877.
[116] Ytreberg, F. M., 2009. Absolute FKBP binding affinities obtained via nonequilibrium
unbinding simulations. The Journal of Chemical Physics 130:164906.
[117] Hajjar, E., D. Perahia, H. Débat, C. Nespoulous, and C. H. Robert, 2006.
Odorant binding and conformational dynamics in the odorant-binding protein.
Journal of Biological Chemistry 281:29929–29937.
[118] Ulucan, O., T. Jaitly, and V. Helms, 2014. Energetics of Hydrophilic Protein–
Protein Association and the Role of Water. Journal of Chemical Theory and
Computation 10:3512–3524.
[119] Darve, E., and A. Pohorille, 2001. Calculating free energies using average
force. The Journal of Chemical Physics 115:9169–9183.
[120] Buch, I., S. K. Sadiq, and G. De Fabritiis, 2011. Optimized potential of mean
force calculations for standard binding free energies. Journal of chemical theory
and computation 7:1765–1772.
[121] Zheng, L., M. Chen, and W. Yang, 2008. Random walk in orthogonal space
to achieve efficient free-energy simulation of complex systems. Proceedings of
the National Academy of Sciences 105:20227–20232.
[122] Lu, C., X. Li, D. Wu, L. Zheng, and W. Yang, 2015. Predictive sampling of rare
conformational events in aqueous solution: designing a generalized orthogonal
space tempering method. Journal of chemical theory and computation 12:41–
52.
127
doi:10.6342/NTU201801603
[123] Huang, Y.-m. M., J. A. McCammon, and Y. Miao, 2018. Replica exchange
Gaussian accelerated molecular dynamics: Improved enhanced sampling and
free energy calculation. Journal of chemical theory and computation 14:1853–
1864.
[124] Minoukadeh, K., C. Chipot, and T. Lelievre, 2010. Potential of mean force
calculations: a multiple-walker adaptive biasing force approach. Journal of
Chemical Theory and Computation 6:1008–1017.
[125] General, I. J., 2010. A note on the standard state’s binding free energy.
Journal of chemical theory and computation 6:2520–2524.
[126] Gilson, M. K., J. a. Given, B. L. Bush, and J. a. McCammon, 1997. The
statistical-thermodynamic basis for computation of binding affinities: a critical
review. Biophysical journal 72:1047–1069.
[127] Woo, H.-J., and B. Roux, 2005. Calculation of absolute protein-ligand binding
free energy from computer simulations. Proceedings of the National Academy
of Sciences 102:6825–6830.
[128] Wang, L., S. W. I. Siu, W. Gu, and V. Helms, 2010. Downhill Binding Energy
Surface of the Barnase-Barstar Complex. Biopolymers 93:977–985.
[129] Deng, Y., and B. Roux, 2006. Calculation of Standard Binding Free Energies:
Aromatic Molecules in the T4 Lysozyme L99A Mutant. Journal of Chemical
Theory and Computation 2:1255–1273.
[130] Roe, D. R., and T. E. Cheatham III, 2013. PTRAJ and CPPTRAJ: software
for processing and analysis of molecular dynamics trajectory data. Journal of
Chemical Theory and Computation 9:3084–3095.
[131] Chen, R., L. Li, and Z. Weng, 2003. ZDOCK: an initial-stage protein-docking
algorithm. Proteins: Structure, Function, and Bioinformatics 52:80–87.
128
doi:10.6342/NTU201801603
[132] Pierce, B., and Z. Weng, 2007. ZRANK: reranking protein docking predictions
with an optimized energy function. Proteins: Structure, Function, and
Bioinformatics 67:1078–1086.
[133] Pierce, B. G., Y. Hourai, and Z. Weng, 2011. Accelerating protein docking in
ZDOCK using an advanced 3D convolution library. PloS one 6:e24657.
[134] Vreven, T., H. Hwang, B. G. Pierce, and Z. Weng, 2012. Prediction of protein–
protein binding free energies. Protein Science 21:396–404.
[135] Resat, H., T. J. Marrone, and J. A. McCammon, 1997. Enzyme-inhibitor association
thermodynamics: explicit and continuum solvent studies. Biophysical
journal 72:522–532.
[136] Limongelli, V., M. Bonomi, and M. Parrinello, 2013. Funnel metadynamics as
accurate binding free-energy method. Proceedings of the National Academy of
Sciences 110:6358–6363.
[137] Fu, H., X. Shao, C. Chipot, and W. Cai, 2016. Extended Adaptive Biasing
Force algorithm. An on-the-fly implementation for accurate free-energy
calculations. Journal of chemical theory and computation 12:3506–3513.
[138] Hansmann, U. H., 1997. Parallel tempering algorithm for conformational studies
of biological molecules. Chemical Physics Letters 281:140–150.
[139] Sugita, Y., and Y. Okamoto, 1999. Replica-exchange molecular dynamics
method for protein folding. Chemical physics letters 314:141–151.
[140] Lyubartsev, A., A. Martsinovski, S. Shevkunov, and P. Vorontsov-Velyaminov,
1992. New approach to Monte Carlo calculation of the free energy: Method
of expanded ensembles. The Journal of chemical physics 96:1776–1783.
[141] Marinari, E., and G. Parisi, 1992. Simulated tempering: a new Monte Carlo
scheme. EPL (Europhysics Letters) 19:451.
129
doi:10.6342/NTU201801603
[142] Berg, B. A., and T. Neuhaus, 1991. Multicanonical algorithms for first order
phase transitions. Physics Letters B 267:249–253.
[143] Berg, B. A., and T. Neuhaus, 1992. Multicanonical ensemble: A new approach
to simulate first-order phase transitions. Physical Review Letters 68:9.
[144] Nakajima, N., H. Nakamura, and A. Kidera, 1997. Multicanonical ensemble
generated by molecular dynamics simulation for enhanced conformational
sampling of peptides. The Journal of Physical Chemistry B 101:817–824.
[145] Gao, Y. Q., 2008. An integrate-over-temperature approach for enhanced sampling.
The Journal of chemical physics 128:064105.
[146] Yang, M., L. Yang, Y. Gao, and H. Hu, 2014. Combine umbrella sampling
with integrated tempering method for efficient and accurate calculation of free
energy changes of complex energy surface. The Journal of Chemical Physics
141:07B618_1.
[147] Ceperley, D., 1978. Ground state of the fermion one-component plasma: A
Monte Carlo study in two and three dimensions. Physical Review B 18:3126.
[148] Ceperley, D. M., and B. Alder, 1980. Ground state of the electron gas by a
stochastic method. Physical Review Letters 45:566.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71319-
dc.description.abstract分子相互作用能量學的計算表徵是分子生物物理學的研究核心,也是迄今為止能彌合相互作用自由能與基礎力學分析之間差距的唯一途徑。分子模擬;如分子動力學(MD)(或蒙特卡羅(MC));用於計算熱力學明確定義的終態之間的自由能差異。例如,一個公認的位能平均力(PMF)計算為物理上可實現的反應過程提供自由能量分佈,例如分子締合和/或解離,二面角變化,區塊/環的構型上的翻轉等。通常,這些分子反應需跨越幾個能量障礙,在無施加任何額外能量的MD模擬,是不能在如此短的時間尺度中模擬出該有的時間尺度上的運動和空間上的變化 。因此在這種情況下,為了此方法在所需配置的空間中做有效的採樣,施加傘狀位能採樣模擬變成一種廣泛使用於增加採樣的方法, 。
傘狀位能採樣通常以沿著定義好的反應坐標做採樣。然而, 任何微小變化都會影響PMF,因此使用任何隨機選擇的路徑所計算出的能量可能會產生誤導。有效的替代方案則是選擇非預定並自然選取的曲線路徑做採樣。但是,這方面應用在蛋白質 - 蛋白質交互作用系統的研究相對較少。本論文則是透過在傘式採樣模擬找到了廣義的曲線路徑選取方法,對barnase-barstar蛋白複合物的解離進行研究。
由於,沿反應坐標存在著多種可能的反應路徑,因此我們利用多個路徑分析,進行傘式採樣模擬以探索沿不同路徑間的自由能差異。分析所有採樣數據,並為每一條路徑構建PMF。由於起始結構為相同的晶體結構,所以一開始我們預期所有PMF會收斂到相類似的值。然而,令我們驚訝的是,並非所有PMF都收斂在一起,我們觀察到有幾個不同路徑並找到不同的收斂值。利用最小作用力的原理(即變分原理)模擬解離反應,計算出PMF的下限的。有趣的是,我們發現PMF輪廓有三個不同路徑收斂到一個雷同的下界。這種結合曲線路徑方法與基於變分原理的方法是新穎的研究方法,其理論框架是優化校準PMF使其趨近標準的結合自由能。 此外,利用群聚採樣數據來找出反應路徑,也觀察到在具有穩健下界的物理軌跡彼此不見得一定相同。
這種曲線路徑傘狀採樣以更自然的方式模擬解離反應,計算出的結合自由能與實驗值非常一致。此外,找到的物理軌跡與兩個主要的解離途徑一致,依據最近報導的barnase-barstar關聯的毫秒長MD模擬,這兩個都是主要解離途徑, 詳細的討論皆在內文中。
zh_TW
dc.description.abstractComputational characterization of molecular interaction energetics is central to molecular biophysics and is so far the only way to bridge the gap between free energies of interaction and underlying mechanistic details. The molecular simulations; such as molecular dynamic (MD) (or Monte-Carlo (MC)); are used to compute free energy difference between thermodynamically well-defined end-states. For example, a well-established potential of mean force (PMF) calculation gives free energy profile for physically achievable processes such as molecular association and/or dissociation, dihedral angle fluctuations, conformational flipping of domains/loops, etc. Usually, these molecular reactions involve crossing over several energy barriers and the unbiased MD simulations cannot sample wider configurational space in shorter time-scaled simulations. In such situations the umbrella sampling simulation, a widely-used sampling enhancement method, is an effective way to sample the desired configurational space.
Umbrella sampling was often implemented in such a way that the samplings were enhanced along a predefined vector as a reaction coordinate. However, any slight change in the predefined vector significantly varies the PMF, and therefore the energetics using any such random choice of vector may mislead. A non-predefined curvilinear path-based sampling enhancement approach is a natural alternative, but was relatively less explored for protein-protein systems. In this thesis, dissociation of the barnase-barstar protein complex is rigorously studied by implementing generalized curvilinear-path approach in umbrella sampling simulations.
There can be multiple reaction channels along the reaction coordinate. Therefore, umbrella sampling simulations are conducted with multiple-walkers to explore free energy difference along different channels. The sampling data is analyzed and PMFs are constructed for each walker. Since the starting conformation is the same crystal pose, all the PMFs are expected to converge to around same value. However, to our surprise, not all but a subset of PMFs converged. There were several such subsets observed that converged to different values. Since the reaction was simulated for dissociation, as per the principle of least action, i.e. variational principle, a PMF that constitute a lower bound is chosen. Interestingly, we found that not just PMF but one but there profiles constitute a robust lower-bound. The theoretical framework is optimized for correcting the PMF to the standard free energy of binding. Combining curvilinear-path approach with variational principle based optimized corrections to standard free energy of binding is a novel implementation. Further, the pathways are traced using clustering of the sampled data. The traced physical trajectories for the robust lower-bound are observed to be different.
The curvilinear-path umbrella sampling approach is highly generalized to simulate dissociation reaction in more natural manner. The estimated free energy of binding is in good agreement with the experimental values. Further, the traced physical trajectories are consistent with the two major dissociation pathways, which are reported recently from milliseconds-long unbiased adaptive MD simulations of barnase-barstar association. Several aspects of implementation of the approach are discussed in detail.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:04:45Z (GMT). No. of bitstreams: 1
ntu-107-D00b46022-1.pdf: 46374839 bytes, checksum: c095beef36045469e26f4b501026353b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of contents
Acknowledgment ..................ii
摘要.............................iv
Abstract ........................vi
List of figures .................10
List of tables ..................11
Abbreviations ...................13
1 Introduction ..................14
1.1 Protein-protein interaction . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Experimental technique to determine thermodynamics and kinetics of protein-protein interactions . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Non-calorimetric characterizations . . . . . . . . . . . . . . . 15
1.2.2 Structural characterization . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Calorimetric characterization . . . . . . . . . . . . . . . . . . 18
2 Statistical thermodynamic basis of molecular interactions energetics
2.1 Free energy difference calculation: categories of methods . . . . . . . 27
2.2 Barnase-Barstar protein complex: a model system . . . . . . . . . . . 29
2.2.1 System preparation . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Systematic solvation scheme . . . . . . . . . . . . . . . . . . . 30
3 Free energy estimation methods 35
3.1 End-point methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 MM/PB(GB)SA . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Linear Interaction Energy . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Protein-protein binding enthalpy estimation . . . . . . . . . . 39
3.2 Pathway methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Alchemical pathway methods . . . . . . . . . . . . . . . . . . 42
3.2.2 Physical pathway methods . . . . . . . . . . . . . . . . . . . . 44
3.3 Sampling enhancement to construct PMF . . . . . . . . . . . . . . . 46
3.4 Umbrella sampling and PMF constructions . . . . . . . . . . . . . . . 52
3.5 Methods to remove contributions from biasing potential . . . . . . . . 54
3.5.1 Weighted histogram analysis method . . . . . . . . . . . . . . 54
3.5.2 Umbrella integration . . . . . . . . . . . . . . . . . . . . . . . 55
4 Umbrella sampling: predefined vectorial-path approach 58
4.1 Implementation: sampling along vectorial path . . . . . . . . . . . . 58
4.2 Role of vectorial-path in constructing PMF . . . . . . . . . . . . . . . 60
4.3 Protein-protein dissociation: PMF along distinct vectors . . . . . . . 62
5 Curvilinear-path umbrella sampling approach 64
5.1 Sampling along non-predefined vector . . . . . . . . . . . . . . . . . . 65
5.2 Generalized curvilinear-path approach . . . . . . . . . . . . . . . . . 65
5.3 Standard free energy of binding from PMF . . . . . . . . . . . . . . . 67
5.4 Umbrella sampling walker: implementation details . . . . . . . . . . . 71
5.5 Direct space pair-pair interaction energetics . . . . . . . . . . . . . . 75
6 PMF constructions from curvilinear-paths approach 76
6.1 Analysis for sufficient sampling . . . . . . . . . . . . . . . . . . . . . 79
6.1.1 Histogram analysis . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.2 Transition flux in 3D . . . . . . . . . . . . . . . . . . . . . . 79
7 Curvilinear path approach applications 83
7.1 Standard free energy of binding from the firm lower-bound PMF . . . 83
7.2 Physical trajectory traces of dissociation reaction . . . . . . . . . . . 86
7.2.1 Trajectory traces from multiple walkers . . . . . . . . . . . . . 86
7.2.2 Comparison of trajectories:
unbiased MD versus curvilinear-path approach . . . . . . . . 88
7.3 Discrimination of bound-like conformations as decoy detection . . . . 90
8 Discussion on curvilinear path approach 95
8.1 Curvilinear physical trajectories and sampling . . . . . . . . . . . . . 95
8.2 Mechanistic and energetic analysis: interface interactions and its association
with variations in PMF depths . . . . . . . . . . . . . . . . 97
8.2.1 Heavy-atom interface interaction analysis . . . . . . . . . . . 98
8.2.2 Patterns in heavy-atom interactions and pathways of dissociation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 Analysis of trends in initial dissociation . . . . . . . . . . . . 102
8.2.4 Direct pair-pair interaction analysis . . . . . . . . . . . . . . . 103
8.3 Umbrella sampling simulation with multiple-walkers . . . . . . . . . . 105
9 Summary and future prospects 109
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Future prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References 114
Appendix 131
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
List of Figures
1.1 Schematic representation of isothermal titration calorimetry. . . . . . 19
1.2 Schematic representation of surface plasmon resonance and its working. 21
2.1 Barnase-barstar protein complex (PDB 1BRS). A) Crystal pose (secondary
structure in cartoon), B) surface potential representation for
the bound pose, C) interface potential representation when proteins
are unbound. RBL is the region around RNA binding loop. . . . . . . 31
2.2 Systematic solvation scheme: The three stepped procedure is explained
here, which includes alignment of new conformation with
reference, finding the overlapping solvent molecules, and swapping
them to get new solvated conformation. . . . . . . . . . . . . . . . . . 32
2.3 Spontaneous association simulations. A) RMSD with respect to crystal
pose versus Time plot. B) Separation distance between COG of barnase
and barstar versus time plot. . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 End-state MD simulations. 2.0 ms-long four independent MD simulations
for bound and unbound states are shown in A) with the distance between
COG versus time plots; and B) the Root-mean-square-deviations (RMSD)
versus time plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Schematic representation of radial distribution function and g(r) versus
reaction coordinate plot. . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Schematic representation of thermodynamically well-defined end-states
A and B separated by the several free energy barriers. The small steps
separated by dx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Schematic representation of predefined vectorial-path approach. Reaction
coordinate is the separation distance. The ligand is separated
from bound pose along a vectorial path and conformations at separation
is saved in the window for sampling enhancement. . . . . . . . 59
4.2 The predefined vectorial path approach: Umbrella sampling simulations
carried out along A) the base-vector along line joining the COG
of two proteins, and B) along the vector 20◦ tilted with respected to
the base-vector. C) PMF constructions. . . . . . . . . . . . . . . . . 63
5.1 Non-predefined curvilinear path approach: the interacting protein
and ligand are separated sequentially such that the path of traverse
evolved stochastically. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Barnase-bsrstar bound pose MD simulations. A) RMSD versus time
plot and B) RMSF for each residue. . . . . . . . . . . . . . . . . . . . 74
6.1 PMF profiles for barnase-barstar dissociation using A) weighted histogram
analysis method (WHAM) and B) using umbrella integration
(UI) are constructed for the fifteen independent walkers of umbrella
sampling simulations with curvilinear-path approach. . . . . . . . . . 78
6.2 Histogram plots. A) Histogram shows sufficient overlap between consecutive
windows. B) The plots for all fifteen simulations. . . . . . . . 80
6.3 Sampled windows in 3D. The transition flux is shown as COG coordinates.
The coordinates of 10 successive windows were colored together (i.e. one
color for 1.0 Å separation). . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1 Robust lower bound PMF from the multiple-walker umbrella sampling
simulations using curvilinear-path approach. A set of PMFs-02,
11, 14 constitutes a firm lower-bound. . . . . . . . . . . . . . . . . . . 84
7.2 Traces of curvilinear physical transitions for barnase-barstar from sequential
umbrella sampling MD simulations. The barnase subunit was set as
the reference for structural alignment and shown as potential isosurface
with the front and side views rotated by 90◦. Based on clustering analysis,
centers of geometry of cluster representative of barstar are shown
as sphere. The radius of sphere represents spread of the samplings in
the cluster. Red, green and blue colors correspond to consecutive 5.0 Å
separation bands. The black curve connecting the spheres is the trace of
physical/geometrical transition pathways. A) PMF-02 with an enlarged
view and B) all fifteen independent multiple walkers. . . . . . . . . . . . 87
7.3 Comparison of pathways between adaptive MD simulations and curvilinearpath
approach trajectories. A) Unbiased adaptive MD simulations
(figure is taken from Nature Chemistry paper (Plattner, 2017)). B)
Curvilinear-Path umbrella sampling approach. . . . . . . . . . . . . . 89
7.4 ZDOCK poses randomly chosen from RMSD range with front and
back view. The crystal pose is colored with potential iso-surface.
The poses were numbered with the ZDOCK ranks (See Table 7.2). . . 91
7.5 Plots of distance of COG between reference bound-like pose and extracted
conformations from the trajectories. Out of 11 decoy poses
only two, i.e. 15052 and 29171 (in inset) show sticky nature to the
reference pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6 PMF profile comparison: a firm lower bound from crystal pose (PMF-
14) versus filtered docked pose as a non-obvious decoys. . . . . . . . . 92
8.1 Heavy-atom interface interaction profiles: each plot includes profile for i)
barnase and barstar; ii) RNA binding loop and barstar; and iii) Val 36 –
Gly 40 loop and barstar. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 The interface interactions plots and traces of barstar unbinding. The
comparison between two subsets of convergent PMF profiles; i.e. A) PMF-
(07,12,15) with higher PMF-depth and B) PMF-(02,11,14) with robust
lower-bound. The physical trajectory of initial 6.0 Å separation of barstar
(shown as sphere) from barnase (shown as surface representation) depicted
in C) and D), for the same PMF subsets. . . . . . . . . . . . . . . . . . 100
8.3 Trends in physical trajectories of initial dissociation of barstar from barnase.
The traces are for initial 6.0 Å separations. A) central view and B)
side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4 Relative physical trajectories for first 10.0 Å separation. Similar to flux
transition plots, the relative transitions are plotted using cluster representative
COG coordinates in 3D plots . . . . . . . . . . . . . . . . . . . . 102
8.5 Direct pair-pair interaction comparison: ELECT and VDW component
profiles for i) robust lower-bound PMF profiles in A) and B); ii) subset of
rest of the profiles in C) and D). . . . . . . . . . . . . . . . . . . . . . . 103
8.6 Comparison of all fifteen profiles of the interface interactions with electrostatic
(ELECT) component. . . . . . . . . . . . . . . . . . . . . . . . . 104
8.7 Comparison of all fifteen profiles of the interface interactions with var der
Waals (VDW) components. . . . . . . . . . . . . . . . . . . . . . . . . 105
List of Tables
3.1 End-state enthalpy of binding. The R01, R02, R03, R04 represents four independent all-atom explicit solvent MD simulations. . . . . . . 40
6.1 Potential of mean force (PMF) calculations from the fifteen walkers of umbrella sampling. The two columns represents PMF using weighter histogram analysis method (ΔGWHAM PMF ) and umbrella integration (ΔGUI PMF). (The error analysis for umbrella integration was not
conducted.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.1 Correction of PMF to standard free energy of binding. PMF constructed from WHAM are corrected to the standard values. . . . . . . 85
7.2 Representative subset of ZDOCK poses selected from the RMSD range to choose near-native and decoy. The colors of the rows are according to the pose shown in figure 7.4. . . . . . . . . . . . . . . . 94
dc.language.isoen
dc.subject個公認的位能平均力zh_TW
dc.subject如分子動力學zh_TW
dc.subjectMD simulationsen
dc.subjectPotential of Mean Force calculationen
dc.subjectUmbrella sampling simulationen
dc.subjectProtein-protein interaction energeticsen
dc.subjectBinding free energy calculationen
dc.title運用於蛋白質與蛋白質交互作用之新穎普適性曲線路徑自由能計算方法zh_TW
dc.titleA novel generalized curvilinear-path approach for characterizing protein-protein interactionsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor林曉青(Dr. Hsiao-Ching Lin)
dc.contributor.oralexamcommittee黃明經(Dr. Ming-Jing Hwang),費伍岡(Dr. Wolfgang Fischer),許豪仁(Dr. Hao-Jen Hsu)
dc.subject.keyword個公認的位能平均力,如分子動力學,zh_TW
dc.subject.keywordMD simulations,Potential of Mean Force calculation, Umbrella sampling simulation,Protein-protein interaction energetics,Binding free energy calculation,en
dc.relation.page166
dc.identifier.doi10.6342/NTU201801603
dc.rights.note有償授權
dc.date.accepted2018-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
45.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved