請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮信(Dr. Jung-Hsin Lin) | |
| dc.contributor.author | Dhananjay C. Joshi | en |
| dc.contributor.author | 達南杰 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:04:45Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-23 | |
| dc.identifier.citation | [1] Jeremy M Berg, J. L. T., and L. Stryer, 2002. Biochemistry. New York: W H
Freeman; 2002., 5th edition. [2] Nooren, I. M. A., and J. M. Thornton, 2003. Diversity of protein–protein interactions. The EMBO journal 22:3486–3492. [3] Moreira, I. S., P. A. Fernandes, and M. J. Ramos, 2007. Hot spots—A review of the protein–protein interface determinant amino‐acid residues. Proteins: Structure, Function, and Bioinformatics 68:803–812. [4] Lua, R. C., D. C. Marciano, P. Katsonis, A. K. Adikesavan, A. D. Wilkins, and O. Lichtarge, 2014. Prediction and redesign of protein–protein interactions. Progress in biophysics and molecular biology 116:194–202. [5] Scott, D. E., A. R. Bayly, C. Abell, and J. Skidmore, 2016. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nature Reviews Drug Discovery 15:533–550. [6] Lazarus, R. A., and F. Scheiflinger, 2017. Mining ancient proteins for nextgeneration drugs. Nature Biotechnology 35:28–29. [7] Perrin, F., 1926. Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l’etat excité. Journal de Physique et le Radium 7:390–401. [8] Cowieson, N. P., A. J. Miles, G. Robin, J. K. Forwood, B. Kobe, J. L. Martin, and B. A. Wallace, 2008. Evaluating protein: protein complex formation using 114 doi:10.6342/NTU201801603 synchrotron radiation circular dichroism spectroscopy. Proteins: Structure, Function, and Bioinformatics 70:1142–1146. [9] Wallace, B. A., and R. W. Janes, 2010. Synchrotron radiation circular dichroism (SRCD) spectroscopy: an enhanced method for examining protein conformations and protein interactions. Biochemical Society Transactions 38:861– 873. [10] Murphy, R. M., 1997. Static and dynamic light scattering of biological macromolecules: what can we learn? Current Opinion in Biotechnology 8:25–30. [11] Some, D., 2013. Light-scattering-based analysis of biomolecular interactions. Biophysical reviews 5:147–158. [12] Liu, J., J. D. Andya, and S. J. Shire, 2006. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. The AAPS journal 8:E580–E589. [13] Cole, J. L., J. W. Lary, T. P. Moody, and T. M. Laue, 2008. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods in cell biology 84:143–179. [14] Wishart, D. S., B. D. Sykes, and F. M. Richards, 1991. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. Journal of molecular biology 222:311–333. [15] Hass, M. A., and M. Ubbink, 2014. Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Current opinion in structural biology 24:45–53. [16] Göbl, C., T. Madl, B. Simon, and M. Sattler, 2014. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Progress in nuclear magnetic resonance spectroscopy 80:26–63. 115 doi:10.6342/NTU201801603 [17] Chayen, N. E., and E. Saridakis, 2008. Protein crystallization: from purified protein to diffraction-quality crystal. Nature methods 5:147. [18] Garman, E. F., 2014. Developments in x-ray crystallographic structure determination of biological macromolecules. Science 343:1102–1108. [19] Pierce, M. M., C. Raman, and B. T. Nall, 1999. Isothermal titration calorimetry of protein–protein interactions. Methods 19:213–221. [20] Liedberg, B., C. Nylander, and I. Lunström, 1983. Surface plasmon resonance for gas detection and biosensing. Sensors and actuators 4:299–304. [21] Isothermal Titration Calorimetry. https://www. malvernpanalytical.com/en/products/technology/microcalorimetry/ isothermal-titration-calorimetry. Accessed: 2018-06-05. [22] Homola, J., S. S. Yee, and G. Gauglitz, 1999. Surface plasmon resonance sensors. Sensors and Actuators B: Chemical 54:3–15. [23] Sabban, S., 2011. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity Fc#RI receptor. Ph.D. thesis, The University of Sheffield. [24] Wells, J. A., and C. L. McClendon, 2007. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450:1001. [25] Fuller, J. C., N. J. Burgoyne, and R. M. Jackson, 2009. Predicting druggable binding sites at the protein–protein interface. Drug discovery today 14:155– 161. [26] Eyrisch, S., and V. Helms, 2007. Transient pockets on protein surfaces involved in protein- protein interaction. Journal of medicinal chemistry 50:3457–3464. [27] Brown, S. P., and P. J. Hajduk, 2006. Effects of conformational dynamics on predicted protein druggability. ChemMedChem 1:70–72. 116 doi:10.6342/NTU201801603 [28] Hansen, N., and W. F. Van Gunsteren, 2014. Practical Aspects of Free- Energy Calculations: A Review. Journal of Chemical Theory and Computation 10:2632–2647. [29] Reif, F., 1965. Fundamentals of statistical mechanics. [30] Tuckerman, M., 2010. Statistical mechanics: theory and molecular simulation. Oxford University Press. [31] Chipot, C., 2014. Frontiers in free-energy calculations of biological systems. Wiley Interdisciplinary Reviews: Computational Molecular Science 4:71–89. [32] Hartley, R. W., 1989. Barnase and barstar: two small proteins to fold and fit together. Trends in biochemical sciences 14:450–454. [33] Hartley, R. W., and J. R. Smeaton, 1973. On the reaction between the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar). Journal of Biological Chemistry 248:5624–5626. [34] Buckle, A. M., G. Schreiber, and A. R. Fersht, 1994. Protein-protein recognition: Crystal structural analysis of a barnase-barstar complex at 2.0-. ANG. resolution. Biochemistry 33:8878–8889. [35] Frisch, C., G. Schreiber, C. M. Johnson, and a. R. Fersht, 1997. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation. Journal of molecular biology 267:696–706. [36] Case, D. A., T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, 2005. The Amber biomolecular simulation programs. Journal of computational chemistry 26:1668–1688. [37] Salomon-Ferrer, R., A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker, 2013. Routine Microsecond Molecular Dynamics Simulations with AMBER on 117 doi:10.6342/NTU201801603 GPUs. 2. Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation 9:3878–3888. [38] Salomon‐Ferrer, R., D. A. Case, and R. C. Walker, 2013. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science 3:198–210. [39] Maier, J. A., C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling, 2015. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation 11:3696–3713. [40] Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, 2004. UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612. [41] DeLano, W. L., 2002. The PyMOL molecular graphics system . [42] Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon, 2001. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences 98:10037–10041. [43] Gabdoulline, R. R., and R. C. Wade, 1997. Simulation of the diffusional association of barnase and barstar. Biophysical journal 72:1917–1929. [44] Gabdoulline, R. R., and R. C. Wade, 2001. Protein-protein association: investigation of factors influencing association rates by Brownian dynamics simulations1. Journal of molecular biology 306:1139–1155. [45] Spaar, A., and V. Helms, 2005. Free energy landscape of protein- protein encounter resulting from Brownian Dynamics simulations of Barnase: Barstar. Journal of chemical theory and computation 1:723–736. 118 doi:10.6342/NTU201801603 [46] Spaar, A., C. Dammer, R. R. Gabdoulline, R. C. Wade, and V. Helms, 2006. Diffusional encounter of barnase and barstar. Biophysical journal 90:1913– 1924. [47] Ahmad, M., W. Gu, T. Geyer, and V. Helms, 2011. Adhesive water networks facilitate binding of protein interfaces. Nature communications 2:261. [48] Plattner, N., S. Doerr, G. De Fabritiis, and F. Noé, 2017. Complete protein– protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nature chemistry 9:1005. [49] Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, and W. Wang, 2000. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of chemical research 33:889–897. [50] Wang, J., P. Morin, W. Wang, and P. A. Kollman, 2001. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Journal of the American Chemical Society 123:5221–5230. [51] Hou, T., J. Wang, Y. Li, and W. Wang, 2010. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of chemical information and modeling 51:69–82. [52] Kuhn, B., P. Gerber, T. Schulz-Gasch, and M. Stahl, 2005. Validation and use of the MM-PBSA approach for drug discovery. Journal of medicinal chemistry 48:4040–4048. [53] Rastelli, G., A. D. Rio, G. Degliesposti, and M. Sgobba, 2010. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of computational chemistry 31:797–810. 119 doi:10.6342/NTU201801603 [54] Kongsted, J., and U. Ryde, 2009. An improved method to predict the entropy term with the MM/PBSA approach. Journal of computer-aided molecular design 23:63. [55] Xu, L., H. Sun, Y. Li, J. Wang, and T. Hou, 2013. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry B 117:8408–8421. [56] Sun, H., Y. Li, S. Tian, L. Xu, and T. Hou, 2014. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics 16:16719–16729. [57] Genheden, S., and U. Ryde, 2015. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery 10:449–461. [58] Tiwary, P., J. Mondal, J. A. Morrone, and B. Berne, 2015. Role of water and steric constraints in the kinetics of cavity–ligand unbinding. Proceedings of the National Academy of Sciences 112:12015–12019. [59] Forli, S., R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson, 2016. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature protocols 11:905. [60] Åqvist, J., C. Medina, and J.-E. Samuelsson, 1994. A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, Design and Selection 7:385–391. [61] Almlöf, M., J. Carlsson, and J. Åqvist, 2007. Improving the accuracy of the linear interaction energy method for solvation free energies. Journal of chemical theory and computation 3:2162–2175. 120 doi:10.6342/NTU201801603 [62] Wang, W., J. Wang, and P. A. Kollman, 1999. What determines the van der waals coefficient b in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins: Structure, Function, and Bioinformatics 34:395–402. [63] Almlöf, M., B. O. Brandsdal, and J. Åqvist, 2004. Binding affinity prediction with different force fields: examination of the linear interaction energy method. Journal of computational chemistry 25:1242–1254. [64] Christ, C. D., A. E. Mark, and W. F. Van Gunsteren, 2010. Basic ingredients of free energy calculations: a review. Journal of computational chemistry 31:1569–1582. [65] Fenley, A. T., N. M. Henriksen, H. S. Muddana, and M. K. Gilson, 2014. Bridging calorimetry and simulation through precise calculations of cucurbituril– guest binding enthalpies. Journal of chemical theory and computation 10:4069– 4078. [66] Tembre, B. L., and J. A. Mc Cammon, 1984. Ligand-receptor interactions. Computers & Chemistry 8:281–283. [67] Shirts, M. R., D. L. Mobley, and J. D. Chodera, 2007. Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time? In Annual Reports in Computational Chemistry, Elsevier, volume 3, 41–59. [68] Chodera, J. D., D. L. Mobley, M. R. Shirts, R. W. Dixon, K. Branson, and V. S. Pande, 2011. Alchemical free energy methods for drug discovery: progress and challenges. Current Opinion in Structural Biology 21:150–160. [69] Zwanzig, R. W., 1954. High‐temperature equation of state by a perturbation method. I. nonpolar gases. The Journal of Chemical Physics 22:1420–1426. [70] Kirkwood, J. G., 1935. Statistical mechanics of fluid mixtures. The Journal of Chemical Physics 3:300–313. 121 doi:10.6342/NTU201801603 [71] Straatsma, T. P., and J. A. McCammon, 1991. Multiconfiguration thermodynamic integration. The Journal of chemical physics 95:1175–1188. [72] Torrie, G. M., and J. P. Valleau, 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 23:187–199. [73] Jarzynski, C., 1997. Nonequilibrium Equality for Free Energy Differences. Physical Review Letters 78:2690–2693. [74] Darve, E., M. A. Wilson, and A. Pohorille, 2002. Calculating free energies using a scaled-force molecular dynamics algorithm. Molecular Simulation 28:113–144. [75] Laio, A., and M. Parrinello, 2002. Escaping free-energy minima. Proceedings of the National Academy of Sciences 99:12562–12566. [76] Doudou, S., N. A. Burton, and R. H. Henchman, 2009. Standard free energy of binding from a one-dimensional potential of mean force. Journal of Chemical Theory and Computation 5:909–918. [77] Radial Distribution Function. https://en.wikipedia.org/wiki/Radial_ distribution_function. Accessed: 2018-06-01. [78] Andrew, R. L., 2001. Molecular modeling principles and applications. 2nd, editor.: Pearson Education Limited . [79] Allen, R. J., C. Valeriani, and P. R. ten Wolde, 2009. Forward flux sampling for rare event simulations. Journal of physics: Condensed matter 21:463102. [80] Escobedo, F. A., E. E. Borrero, and J. C. Araque, 2009. Transition path sampling and forward flux sampling. Applications to biological systems. Journal of Physics: Condensed Matter 21:333101. 122 doi:10.6342/NTU201801603 [81] Bernardi, R. C., M. C. Melo, and K. Schulten, 2015. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA)-General Subjects 1850:872–877. [82] Miao, Y., V. A. Feher, and J. A. McCammon, 2015. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of chemical theory and computation 11:3584–3595. [83] Pan, A. C., T. M. Weinreich, S. Piana, and D. E. Shaw, 2016. Demonstrating an order-of-magnitude sampling enhancement in molecular dynamics simulations of complex protein systems. Journal of chemical theory and computation 12:1360–1367. [84] Park, S., F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten, 2003. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. The Journal of chemical physics 119:3559–3566. [85] Park, S., and K. Schulten, 2004. Calculating potentials of mean force from steered molecular dynamics simulations. The Journal of chemical physics 120:5946–5961. [86] Neumann, J., and K.-E. Gottschalk, 2009. The Effect of Different Force Applications on the Protein-Protein Complex Barnase-Barstar. Biophysical Journal 97:1687–1699. [87] Grubmüller, H., B. Heymann, and P. Tavan, 1996. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271:997–999. [88] Kingsley, L. J., J. Esquivel-Rodríguez, Y. Yang, D. Kihara, and M. A. Lill, 2016. Ranking protein–protein docking results using steered molecular dynamics and potential of mean force calculations. Journal of Computational Chemistry 37:1861–1865. 123 doi:10.6342/NTU201801603 [89] Barducci, A., M. Bonomi, and M. Parrinello, 2011. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1:826–843. [90] Ensing, B., A. Laio, M. Parrinello, and M. L. Klein, 2005. A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. The journal of physical chemistry B 109:6676–6687. [91] Ensing, B., and M. L. Klein, 2005. Perspective on the reactions between F–and CH3CH2F: The free energy landscape of the E2 and SN2 reaction channels. Proceedings of the National Academy of Sciences of the United States of America 102:6755–6759. [92] Fiorin, G., A. Pastore, P. Carloni, and M. Parrinello, 2006. Using metadynamics to understand the mechanism of calmodulin/target recognition at atomic detail. Biophysical journal 91:2768–2777. [93] Bonomi, M., F. L. Gervasio, G. Tiana, D. Provasi, R. A. Broglia, and M. Parrinello, 2007. Insight into the folding inhibition of the HIV-1 protease by a small peptide. Biophysical journal 93:2813–2821. [94] Hénin, J., and C. Chipot, 2004. Overcoming free energy barriers using unconstrained molecular dynamics simulations. The Journal of Chemical Physics 121:2904–2914. [95] Gumbart, J. C., B. Roux, and C. Chipot, 2013. Efficient determination of protein–protein standard binding free energies from first principles. Journal of Chemical Theory and Computation 9:3789–3798. [96] Gumbart, J. C., B. Roux, and C. Chipot, 2013. Standard Binding Free Energies from Computer Simulations: What Is the Best Strategy? Journal of Chemical Theory and Computation 9:794–802. [97] Hamelberg, D., J. Mongan, and J. A. McCammon, 2004. Accelerated molec- 124 doi:10.6342/NTU201801603 ular dynamics: a promising and efficient simulation method for biomolecules. The Journal of chemical physics 120:11919–11929. [98] Shen, T., and D. Hamelberg, 2008. A statistical analysis of the precision of reweighting-based simulations. The Journal of chemical physics 129:034103. [99] de Oliveira, C. A. F., D. Hamelberg, and J. A. McCammon, 2008. Coupling accelerated molecular dynamics methods with thermodynamic integration simulations. Journal of chemical theory and computation 4:1516–1525. [100] Wereszczynski, J., and J. A. McCammon, 2010. Using selectively applied accelerated molecular dynamics to enhance free energy calculations. Journal of chemical theory and computation 6:3285–3292. [101] Fajer, M., D. Hamelberg, and J. A. McCammon, 2008. Replica-exchange accelerated molecular dynamics (REXAMD) applied to thermodynamic integration. Journal of chemical theory and computation 4:1565–1569. [102] Markwick, P. R., L. C. Pierce, D. B. Goodin, and J. A. McCammon, 2011. Adaptive accelerated molecular dynamics (Ad-AMD) revealing the molecular plasticity of P450cam. The journal of physical chemistry letters 2:158–164. [103] Miao, Y., Y.-m. M. Huang, R. C. Walker, J. A. McCammon, and C.-e. A. Chang, 2018. Ligand binding pathways and conformational transitions of the HIV protease. Biochemistry 57:1533–1541. [104] Miao, Y., and J. A. McCammon, 2018. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proceedings of the National Academy of Sciences 201800756. [105] Sinko, W., Y. Miao, C. A. F. de Oliveira, and J. A. McCammon, 2013. Population based reweighting of scaled molecular dynamics. The Journal of Physical Chemistry B 117:12759–12768. 125 doi:10.6342/NTU201801603 [106] Miao, Y., W. Sinko, L. Pierce, D. Bucher, R. C. Walker, and J. A. McCammon, 2014. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. Journal of chemical theory and computation 10:2677– 2689. [107] Zhang, Y., and G. A. Voth, 2011. Combined Metadynamics and Umbrella Sampling Method for the Calculation of Ion Permeation Free Energy Profiles. Journal of Chemical Theory and Computation 7:2277–2283. [108] Kästner, J., 2011. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 1:932–942. [109] Grossfield, A., 2012. WHAM: the weighted histogram analysis method. version 2:6. [110] Kästner, J., and W. Thiel, 2005. Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration”. The Journal of Chemical Physics 123:144104. [111] Kumar, S., J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of computational chemistry 13:1011– 1021. [112] Ferrenberg, A. M., and R. H. Swendsen, 1988. New Monte Carlo technique for studying phase transitions. Physical review letters 61:2635. [113] Hub, J. S., B. L. de Groot, and D. van der Spoel, 2010. g_wham-A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation 6:3713–3720. [114] Kästner, J., and W. Thiel, 2006. Analysis of the statistical error in umbrella 126 doi:10.6342/NTU201801603 sampling simulations by umbrella integration. The Journal of chemical physics 124:234106. [115] Lee, M. S., and M. A. Olson, 2006. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophysical Journal 90:864–877. [116] Ytreberg, F. M., 2009. Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations. The Journal of Chemical Physics 130:164906. [117] Hajjar, E., D. Perahia, H. Débat, C. Nespoulous, and C. H. Robert, 2006. Odorant binding and conformational dynamics in the odorant-binding protein. Journal of Biological Chemistry 281:29929–29937. [118] Ulucan, O., T. Jaitly, and V. Helms, 2014. Energetics of Hydrophilic Protein– Protein Association and the Role of Water. Journal of Chemical Theory and Computation 10:3512–3524. [119] Darve, E., and A. Pohorille, 2001. Calculating free energies using average force. The Journal of Chemical Physics 115:9169–9183. [120] Buch, I., S. K. Sadiq, and G. De Fabritiis, 2011. Optimized potential of mean force calculations for standard binding free energies. Journal of chemical theory and computation 7:1765–1772. [121] Zheng, L., M. Chen, and W. Yang, 2008. Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proceedings of the National Academy of Sciences 105:20227–20232. [122] Lu, C., X. Li, D. Wu, L. Zheng, and W. Yang, 2015. Predictive sampling of rare conformational events in aqueous solution: designing a generalized orthogonal space tempering method. Journal of chemical theory and computation 12:41– 52. 127 doi:10.6342/NTU201801603 [123] Huang, Y.-m. M., J. A. McCammon, and Y. Miao, 2018. Replica exchange Gaussian accelerated molecular dynamics: Improved enhanced sampling and free energy calculation. Journal of chemical theory and computation 14:1853– 1864. [124] Minoukadeh, K., C. Chipot, and T. Lelievre, 2010. Potential of mean force calculations: a multiple-walker adaptive biasing force approach. Journal of Chemical Theory and Computation 6:1008–1017. [125] General, I. J., 2010. A note on the standard state’s binding free energy. Journal of chemical theory and computation 6:2520–2524. [126] Gilson, M. K., J. a. Given, B. L. Bush, and J. a. McCammon, 1997. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophysical journal 72:1047–1069. [127] Woo, H.-J., and B. Roux, 2005. Calculation of absolute protein-ligand binding free energy from computer simulations. Proceedings of the National Academy of Sciences 102:6825–6830. [128] Wang, L., S. W. I. Siu, W. Gu, and V. Helms, 2010. Downhill Binding Energy Surface of the Barnase-Barstar Complex. Biopolymers 93:977–985. [129] Deng, Y., and B. Roux, 2006. Calculation of Standard Binding Free Energies: Aromatic Molecules in the T4 Lysozyme L99A Mutant. Journal of Chemical Theory and Computation 2:1255–1273. [130] Roe, D. R., and T. E. Cheatham III, 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation 9:3084–3095. [131] Chen, R., L. Li, and Z. Weng, 2003. ZDOCK: an initial-stage protein-docking algorithm. Proteins: Structure, Function, and Bioinformatics 52:80–87. 128 doi:10.6342/NTU201801603 [132] Pierce, B., and Z. Weng, 2007. ZRANK: reranking protein docking predictions with an optimized energy function. Proteins: Structure, Function, and Bioinformatics 67:1078–1086. [133] Pierce, B. G., Y. Hourai, and Z. Weng, 2011. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PloS one 6:e24657. [134] Vreven, T., H. Hwang, B. G. Pierce, and Z. Weng, 2012. Prediction of protein– protein binding free energies. Protein Science 21:396–404. [135] Resat, H., T. J. Marrone, and J. A. McCammon, 1997. Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies. Biophysical journal 72:522–532. [136] Limongelli, V., M. Bonomi, and M. Parrinello, 2013. Funnel metadynamics as accurate binding free-energy method. Proceedings of the National Academy of Sciences 110:6358–6363. [137] Fu, H., X. Shao, C. Chipot, and W. Cai, 2016. Extended Adaptive Biasing Force algorithm. An on-the-fly implementation for accurate free-energy calculations. Journal of chemical theory and computation 12:3506–3513. [138] Hansmann, U. H., 1997. Parallel tempering algorithm for conformational studies of biological molecules. Chemical Physics Letters 281:140–150. [139] Sugita, Y., and Y. Okamoto, 1999. Replica-exchange molecular dynamics method for protein folding. Chemical physics letters 314:141–151. [140] Lyubartsev, A., A. Martsinovski, S. Shevkunov, and P. Vorontsov-Velyaminov, 1992. New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles. The Journal of chemical physics 96:1776–1783. [141] Marinari, E., and G. Parisi, 1992. Simulated tempering: a new Monte Carlo scheme. EPL (Europhysics Letters) 19:451. 129 doi:10.6342/NTU201801603 [142] Berg, B. A., and T. Neuhaus, 1991. Multicanonical algorithms for first order phase transitions. Physics Letters B 267:249–253. [143] Berg, B. A., and T. Neuhaus, 1992. Multicanonical ensemble: A new approach to simulate first-order phase transitions. Physical Review Letters 68:9. [144] Nakajima, N., H. Nakamura, and A. Kidera, 1997. Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. The Journal of Physical Chemistry B 101:817–824. [145] Gao, Y. Q., 2008. An integrate-over-temperature approach for enhanced sampling. The Journal of chemical physics 128:064105. [146] Yang, M., L. Yang, Y. Gao, and H. Hu, 2014. Combine umbrella sampling with integrated tempering method for efficient and accurate calculation of free energy changes of complex energy surface. The Journal of Chemical Physics 141:07B618_1. [147] Ceperley, D., 1978. Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Physical Review B 18:3126. [148] Ceperley, D. M., and B. Alder, 1980. Ground state of the electron gas by a stochastic method. Physical Review Letters 45:566. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71319 | - |
| dc.description.abstract | 分子相互作用能量學的計算表徵是分子生物物理學的研究核心,也是迄今為止能彌合相互作用自由能與基礎力學分析之間差距的唯一途徑。分子模擬;如分子動力學(MD)(或蒙特卡羅(MC));用於計算熱力學明確定義的終態之間的自由能差異。例如,一個公認的位能平均力(PMF)計算為物理上可實現的反應過程提供自由能量分佈,例如分子締合和/或解離,二面角變化,區塊/環的構型上的翻轉等。通常,這些分子反應需跨越幾個能量障礙,在無施加任何額外能量的MD模擬,是不能在如此短的時間尺度中模擬出該有的時間尺度上的運動和空間上的變化 。因此在這種情況下,為了此方法在所需配置的空間中做有效的採樣,施加傘狀位能採樣模擬變成一種廣泛使用於增加採樣的方法, 。
傘狀位能採樣通常以沿著定義好的反應坐標做採樣。然而, 任何微小變化都會影響PMF,因此使用任何隨機選擇的路徑所計算出的能量可能會產生誤導。有效的替代方案則是選擇非預定並自然選取的曲線路徑做採樣。但是,這方面應用在蛋白質 - 蛋白質交互作用系統的研究相對較少。本論文則是透過在傘式採樣模擬找到了廣義的曲線路徑選取方法,對barnase-barstar蛋白複合物的解離進行研究。 由於,沿反應坐標存在著多種可能的反應路徑,因此我們利用多個路徑分析,進行傘式採樣模擬以探索沿不同路徑間的自由能差異。分析所有採樣數據,並為每一條路徑構建PMF。由於起始結構為相同的晶體結構,所以一開始我們預期所有PMF會收斂到相類似的值。然而,令我們驚訝的是,並非所有PMF都收斂在一起,我們觀察到有幾個不同路徑並找到不同的收斂值。利用最小作用力的原理(即變分原理)模擬解離反應,計算出PMF的下限的。有趣的是,我們發現PMF輪廓有三個不同路徑收斂到一個雷同的下界。這種結合曲線路徑方法與基於變分原理的方法是新穎的研究方法,其理論框架是優化校準PMF使其趨近標準的結合自由能。 此外,利用群聚採樣數據來找出反應路徑,也觀察到在具有穩健下界的物理軌跡彼此不見得一定相同。 這種曲線路徑傘狀採樣以更自然的方式模擬解離反應,計算出的結合自由能與實驗值非常一致。此外,找到的物理軌跡與兩個主要的解離途徑一致,依據最近報導的barnase-barstar關聯的毫秒長MD模擬,這兩個都是主要解離途徑, 詳細的討論皆在內文中。 | zh_TW |
| dc.description.abstract | Computational characterization of molecular interaction energetics is central to molecular biophysics and is so far the only way to bridge the gap between free energies of interaction and underlying mechanistic details. The molecular simulations; such as molecular dynamic (MD) (or Monte-Carlo (MC)); are used to compute free energy difference between thermodynamically well-defined end-states. For example, a well-established potential of mean force (PMF) calculation gives free energy profile for physically achievable processes such as molecular association and/or dissociation, dihedral angle fluctuations, conformational flipping of domains/loops, etc. Usually, these molecular reactions involve crossing over several energy barriers and the unbiased MD simulations cannot sample wider configurational space in shorter time-scaled simulations. In such situations the umbrella sampling simulation, a widely-used sampling enhancement method, is an effective way to sample the desired configurational space.
Umbrella sampling was often implemented in such a way that the samplings were enhanced along a predefined vector as a reaction coordinate. However, any slight change in the predefined vector significantly varies the PMF, and therefore the energetics using any such random choice of vector may mislead. A non-predefined curvilinear path-based sampling enhancement approach is a natural alternative, but was relatively less explored for protein-protein systems. In this thesis, dissociation of the barnase-barstar protein complex is rigorously studied by implementing generalized curvilinear-path approach in umbrella sampling simulations. There can be multiple reaction channels along the reaction coordinate. Therefore, umbrella sampling simulations are conducted with multiple-walkers to explore free energy difference along different channels. The sampling data is analyzed and PMFs are constructed for each walker. Since the starting conformation is the same crystal pose, all the PMFs are expected to converge to around same value. However, to our surprise, not all but a subset of PMFs converged. There were several such subsets observed that converged to different values. Since the reaction was simulated for dissociation, as per the principle of least action, i.e. variational principle, a PMF that constitute a lower bound is chosen. Interestingly, we found that not just PMF but one but there profiles constitute a robust lower-bound. The theoretical framework is optimized for correcting the PMF to the standard free energy of binding. Combining curvilinear-path approach with variational principle based optimized corrections to standard free energy of binding is a novel implementation. Further, the pathways are traced using clustering of the sampled data. The traced physical trajectories for the robust lower-bound are observed to be different. The curvilinear-path umbrella sampling approach is highly generalized to simulate dissociation reaction in more natural manner. The estimated free energy of binding is in good agreement with the experimental values. Further, the traced physical trajectories are consistent with the two major dissociation pathways, which are reported recently from milliseconds-long unbiased adaptive MD simulations of barnase-barstar association. Several aspects of implementation of the approach are discussed in detail. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:04:45Z (GMT). No. of bitstreams: 1 ntu-107-D00b46022-1.pdf: 46374839 bytes, checksum: c095beef36045469e26f4b501026353b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of contents
Acknowledgment ..................ii 摘要.............................iv Abstract ........................vi List of figures .................10 List of tables ..................11 Abbreviations ...................13 1 Introduction ..................14 1.1 Protein-protein interaction . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2 Experimental technique to determine thermodynamics and kinetics of protein-protein interactions . . . . . . . . . . . . . . . . . . . . . . 15 1.2.1 Non-calorimetric characterizations . . . . . . . . . . . . . . . 15 1.2.2 Structural characterization . . . . . . . . . . . . . . . . . . . . 17 1.2.3 Calorimetric characterization . . . . . . . . . . . . . . . . . . 18 2 Statistical thermodynamic basis of molecular interactions energetics 2.1 Free energy difference calculation: categories of methods . . . . . . . 27 2.2 Barnase-Barstar protein complex: a model system . . . . . . . . . . . 29 2.2.1 System preparation . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Systematic solvation scheme . . . . . . . . . . . . . . . . . . . 30 3 Free energy estimation methods 35 3.1 End-point methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 MM/PB(GB)SA . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 Linear Interaction Energy . . . . . . . . . . . . . . . . . . . . 37 3.1.3 Protein-protein binding enthalpy estimation . . . . . . . . . . 39 3.2 Pathway methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.1 Alchemical pathway methods . . . . . . . . . . . . . . . . . . 42 3.2.2 Physical pathway methods . . . . . . . . . . . . . . . . . . . . 44 3.3 Sampling enhancement to construct PMF . . . . . . . . . . . . . . . 46 3.4 Umbrella sampling and PMF constructions . . . . . . . . . . . . . . . 52 3.5 Methods to remove contributions from biasing potential . . . . . . . . 54 3.5.1 Weighted histogram analysis method . . . . . . . . . . . . . . 54 3.5.2 Umbrella integration . . . . . . . . . . . . . . . . . . . . . . . 55 4 Umbrella sampling: predefined vectorial-path approach 58 4.1 Implementation: sampling along vectorial path . . . . . . . . . . . . 58 4.2 Role of vectorial-path in constructing PMF . . . . . . . . . . . . . . . 60 4.3 Protein-protein dissociation: PMF along distinct vectors . . . . . . . 62 5 Curvilinear-path umbrella sampling approach 64 5.1 Sampling along non-predefined vector . . . . . . . . . . . . . . . . . . 65 5.2 Generalized curvilinear-path approach . . . . . . . . . . . . . . . . . 65 5.3 Standard free energy of binding from PMF . . . . . . . . . . . . . . . 67 5.4 Umbrella sampling walker: implementation details . . . . . . . . . . . 71 5.5 Direct space pair-pair interaction energetics . . . . . . . . . . . . . . 75 6 PMF constructions from curvilinear-paths approach 76 6.1 Analysis for sufficient sampling . . . . . . . . . . . . . . . . . . . . . 79 6.1.1 Histogram analysis . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1.2 Transition flux in 3D . . . . . . . . . . . . . . . . . . . . . . 79 7 Curvilinear path approach applications 83 7.1 Standard free energy of binding from the firm lower-bound PMF . . . 83 7.2 Physical trajectory traces of dissociation reaction . . . . . . . . . . . 86 7.2.1 Trajectory traces from multiple walkers . . . . . . . . . . . . . 86 7.2.2 Comparison of trajectories: unbiased MD versus curvilinear-path approach . . . . . . . . 88 7.3 Discrimination of bound-like conformations as decoy detection . . . . 90 8 Discussion on curvilinear path approach 95 8.1 Curvilinear physical trajectories and sampling . . . . . . . . . . . . . 95 8.2 Mechanistic and energetic analysis: interface interactions and its association with variations in PMF depths . . . . . . . . . . . . . . . . 97 8.2.1 Heavy-atom interface interaction analysis . . . . . . . . . . . 98 8.2.2 Patterns in heavy-atom interactions and pathways of dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.2.3 Analysis of trends in initial dissociation . . . . . . . . . . . . 102 8.2.4 Direct pair-pair interaction analysis . . . . . . . . . . . . . . . 103 8.3 Umbrella sampling simulation with multiple-walkers . . . . . . . . . . 105 9 Summary and future prospects 109 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.2 Future prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References 114 Appendix 131 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 List of Figures 1.1 Schematic representation of isothermal titration calorimetry. . . . . . 19 1.2 Schematic representation of surface plasmon resonance and its working. 21 2.1 Barnase-barstar protein complex (PDB 1BRS). A) Crystal pose (secondary structure in cartoon), B) surface potential representation for the bound pose, C) interface potential representation when proteins are unbound. RBL is the region around RNA binding loop. . . . . . . 31 2.2 Systematic solvation scheme: The three stepped procedure is explained here, which includes alignment of new conformation with reference, finding the overlapping solvent molecules, and swapping them to get new solvated conformation. . . . . . . . . . . . . . . . . . 32 2.3 Spontaneous association simulations. A) RMSD with respect to crystal pose versus Time plot. B) Separation distance between COG of barnase and barstar versus time plot. . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 End-state MD simulations. 2.0 ms-long four independent MD simulations for bound and unbound states are shown in A) with the distance between COG versus time plots; and B) the Root-mean-square-deviations (RMSD) versus time plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Schematic representation of radial distribution function and g(r) versus reaction coordinate plot. . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Schematic representation of thermodynamically well-defined end-states A and B separated by the several free energy barriers. The small steps separated by dx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Schematic representation of predefined vectorial-path approach. Reaction coordinate is the separation distance. The ligand is separated from bound pose along a vectorial path and conformations at separation is saved in the window for sampling enhancement. . . . . . . . 59 4.2 The predefined vectorial path approach: Umbrella sampling simulations carried out along A) the base-vector along line joining the COG of two proteins, and B) along the vector 20◦ tilted with respected to the base-vector. C) PMF constructions. . . . . . . . . . . . . . . . . 63 5.1 Non-predefined curvilinear path approach: the interacting protein and ligand are separated sequentially such that the path of traverse evolved stochastically. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Barnase-bsrstar bound pose MD simulations. A) RMSD versus time plot and B) RMSF for each residue. . . . . . . . . . . . . . . . . . . . 74 6.1 PMF profiles for barnase-barstar dissociation using A) weighted histogram analysis method (WHAM) and B) using umbrella integration (UI) are constructed for the fifteen independent walkers of umbrella sampling simulations with curvilinear-path approach. . . . . . . . . . 78 6.2 Histogram plots. A) Histogram shows sufficient overlap between consecutive windows. B) The plots for all fifteen simulations. . . . . . . . 80 6.3 Sampled windows in 3D. The transition flux is shown as COG coordinates. The coordinates of 10 successive windows were colored together (i.e. one color for 1.0 Å separation). . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1 Robust lower bound PMF from the multiple-walker umbrella sampling simulations using curvilinear-path approach. A set of PMFs-02, 11, 14 constitutes a firm lower-bound. . . . . . . . . . . . . . . . . . . 84 7.2 Traces of curvilinear physical transitions for barnase-barstar from sequential umbrella sampling MD simulations. The barnase subunit was set as the reference for structural alignment and shown as potential isosurface with the front and side views rotated by 90◦. Based on clustering analysis, centers of geometry of cluster representative of barstar are shown as sphere. The radius of sphere represents spread of the samplings in the cluster. Red, green and blue colors correspond to consecutive 5.0 Å separation bands. The black curve connecting the spheres is the trace of physical/geometrical transition pathways. A) PMF-02 with an enlarged view and B) all fifteen independent multiple walkers. . . . . . . . . . . . 87 7.3 Comparison of pathways between adaptive MD simulations and curvilinearpath approach trajectories. A) Unbiased adaptive MD simulations (figure is taken from Nature Chemistry paper (Plattner, 2017)). B) Curvilinear-Path umbrella sampling approach. . . . . . . . . . . . . . 89 7.4 ZDOCK poses randomly chosen from RMSD range with front and back view. The crystal pose is colored with potential iso-surface. The poses were numbered with the ZDOCK ranks (See Table 7.2). . . 91 7.5 Plots of distance of COG between reference bound-like pose and extracted conformations from the trajectories. Out of 11 decoy poses only two, i.e. 15052 and 29171 (in inset) show sticky nature to the reference pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.6 PMF profile comparison: a firm lower bound from crystal pose (PMF- 14) versus filtered docked pose as a non-obvious decoys. . . . . . . . . 92 8.1 Heavy-atom interface interaction profiles: each plot includes profile for i) barnase and barstar; ii) RNA binding loop and barstar; and iii) Val 36 – Gly 40 loop and barstar. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.2 The interface interactions plots and traces of barstar unbinding. The comparison between two subsets of convergent PMF profiles; i.e. A) PMF- (07,12,15) with higher PMF-depth and B) PMF-(02,11,14) with robust lower-bound. The physical trajectory of initial 6.0 Å separation of barstar (shown as sphere) from barnase (shown as surface representation) depicted in C) and D), for the same PMF subsets. . . . . . . . . . . . . . . . . . 100 8.3 Trends in physical trajectories of initial dissociation of barstar from barnase. The traces are for initial 6.0 Å separations. A) central view and B) side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4 Relative physical trajectories for first 10.0 Å separation. Similar to flux transition plots, the relative transitions are plotted using cluster representative COG coordinates in 3D plots . . . . . . . . . . . . . . . . . . . . 102 8.5 Direct pair-pair interaction comparison: ELECT and VDW component profiles for i) robust lower-bound PMF profiles in A) and B); ii) subset of rest of the profiles in C) and D). . . . . . . . . . . . . . . . . . . . . . . 103 8.6 Comparison of all fifteen profiles of the interface interactions with electrostatic (ELECT) component. . . . . . . . . . . . . . . . . . . . . . . . . 104 8.7 Comparison of all fifteen profiles of the interface interactions with var der Waals (VDW) components. . . . . . . . . . . . . . . . . . . . . . . . . 105 List of Tables 3.1 End-state enthalpy of binding. The R01, R02, R03, R04 represents four independent all-atom explicit solvent MD simulations. . . . . . . 40 6.1 Potential of mean force (PMF) calculations from the fifteen walkers of umbrella sampling. The two columns represents PMF using weighter histogram analysis method (ΔGWHAM PMF ) and umbrella integration (ΔGUI PMF). (The error analysis for umbrella integration was not conducted.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.1 Correction of PMF to standard free energy of binding. PMF constructed from WHAM are corrected to the standard values. . . . . . . 85 7.2 Representative subset of ZDOCK poses selected from the RMSD range to choose near-native and decoy. The colors of the rows are according to the pose shown in figure 7.4. . . . . . . . . . . . . . . . 94 | |
| dc.language.iso | en | |
| dc.subject | 個公認的位能平均力 | zh_TW |
| dc.subject | 如分子動力學 | zh_TW |
| dc.subject | MD simulations | en |
| dc.subject | Potential of Mean Force calculation | en |
| dc.subject | Umbrella sampling simulation | en |
| dc.subject | Protein-protein interaction energetics | en |
| dc.subject | Binding free energy calculation | en |
| dc.title | 運用於蛋白質與蛋白質交互作用之新穎普適性曲線路徑自由能計算方法 | zh_TW |
| dc.title | A novel generalized curvilinear-path approach for characterizing protein-protein interactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林曉青(Dr. Hsiao-Ching Lin) | |
| dc.contributor.oralexamcommittee | 黃明經(Dr. Ming-Jing Hwang),費伍岡(Dr. Wolfgang Fischer),許豪仁(Dr. Hao-Jen Hsu) | |
| dc.subject.keyword | 個公認的位能平均力,如分子動力學, | zh_TW |
| dc.subject.keyword | MD simulations,Potential of Mean Force calculation, Umbrella sampling simulation,Protein-protein interaction energetics,Binding free energy calculation, | en |
| dc.relation.page | 166 | |
| dc.identifier.doi | 10.6342/NTU201801603 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 45.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
