Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71311
Title: 動態時間校正與模型基底分析高維度時間序列資料
Large Scale Time Series Data Analysis by Using Dynamic Time
Warping and Model-Based Method
Authors: Hao Chang
張皓
Advisor: 任立中
Keyword: 時間序列相關性,高維度時間序列,動態時間校正,ARIMA 模型,殘差分析,
time series correlation,high dimension time series,dynamic time warping,ARIMA model,residual analysis,
Publication Year : 2018
Degree: 碩士
Abstract: 在傳統的時間序列分析中,多是針對單一的時間序列進行自我相關迴歸分析,若要進行高維度的分析則可能遇上非定態(Non-Stationary)的情況,無法直接建立模型分析。因此發展出如 PCA 降維(Gavrilov, et al. 2000)、動態時間校正(Keogh and Pazzani 2001)等方法將高維時間序列進行分群(Clustering)。
本篇研究使用聯合醫院某院區為期兩年半之用藥資料進行分析,其中包含1038 種藥品在 30 個月中的藥品支出量,在對藥物不具有領域知識(Domain knowledge)的情況下,欲分別使用動態時間校正以及 ARIMA 模型建立各藥品的殘差矩陣兩方法,探詢各藥品之相關性,再從有相關性的藥品當中,實際查看時間序列上的趨勢(Trend)、季節性(Seasonal)的異同,或是序列相似的藥品間是否具有實際關係做後續分析。
In traditional time series methods, studies usually used ARIMA model to analysis and predict. However, it may become non-stationary model in high dimension situation
so that the study can’t use multivariate ARIMA model directly. Reducing dimensions by PCA (principal component analysis) and DTW (dynamic time warping) are another
way to cluster high dimensions time series data.
Data of the theme is the medicine expenditure from TAIPEI CITY HOSPITAL. It is from January, 2015 to June, 2017, includes 1038 drugs. Without domain knowledge of drugs, the study uses DTW and residual matrix of ARIMA model individually to find correlated drugs. After finds out correlated drugs, the author checks if these drugs have
similarity of trend or seasonal.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71311
DOI: 10.6342/NTU201801753
Fulltext Rights: 有償授權
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.12 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved