請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周家蓓(Chia-pei Chou) | |
| dc.contributor.author | Yang Li | en |
| dc.contributor.author | 李陽 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:04:15Z | - |
| dc.date.available | 2019-07-26 | |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-23 | |
| dc.identifier.citation | [1] Qin, Tong, et al. 'Crowdsourcing based event reporting system using smartphones with accurate localization and photo tamper detection.'International Conference on Big Data Computing and Communications. Springer International Publishing, 2015.
[2] Scholotjes, M. R., A. Visser, and C. Bennett. 'Evaluation of a smartphone roughness meter.' (2014). [3] Chen, Kongyang, et al. 'CRSM: a practical crowdsourcing-based road surface monitoring system.' Wireless Networks 22.3 (2016): 765-779. [4] 周家蓓、陳艾懃,「市區道路鋪面平整度管理精進作為之研究」,內政部營建署委託研究,106年12月。 [5] 周家蓓,路面品質績效量測設備開發先導計畫,交通部運輸研究所委託研究,94年。 [6] Du, Yuchuan, et al. 'Application of vehicle mounted accelerometers to measure pavement roughness.' International Journal of Distributed Sensor Networks 12.6 (2016): 8413146. [7] 周家蓓,「鋪面損壞自動化辨識功能擴展與自行車道鋪面績效門檻之開發建置」,內政部營建署委託計畫,民國 101 年 11 月。 [8] 周家蓓、陳艾懃,「鋪面自動化辨識與自行車道平坦度量測設備功能擴展」,內政部營建署委託研究,103 年 7 月。 [9] Sayers, M. W., T. D. Gillespie, and C.A.V. Queiroz “The International Road Roughness Experiment: A Basis for Establishing a Standard Scale for Road Roughness Measurement,” Transportation Research Record 1084, Transportation Research Board, National Research Council, Washington, D. C., 1986. [10] González, A., O’brien, E. J., Li, Y. Y. and Cashell, K. The use of vehicle acceleration measurements to estimate road roughness. Vehicle System Dynamics, 46(6), 2008, pp. 483–499, [11] Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S. and Balakrishnan, H. The pothole patrol: using a mobile sensor network for road surface monitoring, Paper presented at the Sixth International Conference on Mobile System, Applications and Services, Breckenridge, Colorado, United States, June 17-20, 2008 [12] Eljamassi, Alaeddinne D. 'Using smartphone and GIS to measure International Roughness Index (IRI) in Gaza Strip-Palestine Road Network (Deir Balah as case study).' Journal of Engineering Research and Technology 4.3 (2017). [13] Mohan, P., Padmanabhan, V. N. and Ramjee, R. Nericell: Rich Monitoring of Road and Traffic Condition using Mobile Smartphones. Proc. of the 6th ACM Conference on Embedded Network Sensor Systems, 2008, pp. 323-336. [14] Mednis, A., Strazdins, G., Zviedris, R., Kanonirs, G. and Selavo, L. Real time pothole detection using Android smartphones with accelerometers, Paper presented at the 2011 International Conference on Distributed Computing in Sensor Systems, Barcelona, Spain, June 27-29, 2011 [15] Strazdins, G., Mednis, A., Kanonirs, G., Zviedris, R. and Selavo, L. Towards Vehicular Sensor Networks with Android Smartphones for Road Surface Monitoring, Paper presented at the 2nd International Workshop on Networks of Cooperating Objects, Chicago, USA, April 11, 2011 [16] Tai, Y., Chan, C. and Hsu, J. Y. Automatic road anomaly detection using smart mobile device, Paper presented at the 2010 Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, November 18-20, 2010. [17] Perttunen, M., Mazhelis, O., Cong, F., Kauppila, M., Leppänen, T., Kantola, J., Collin J., Pirttikangas, S., Haverinen, J. and Ristaniemi, T. Distributed road surface condition monitoring using smartphones. Ubiquitous Intelligence and Computing, 2011, pp. 64–78. [18] Kumar, S. Shathish, and A. Jayachandran. 'Detecting and Alerting Damaged Roads Using Smart Street System.' (2017) [19] Mahajan, Dimpal V., and Trupti Dange. 'Estimation of road roughness condition by using sensors in smartphones.' Int. J. Comput. Eng. & Technol 6.7 (2015): 41-49. [20] Zeng, Huanghui, et al. 'Feasibility assessment of a smartphone-based application to estimate road roughness.' KSCE Journal of Civil Engineering (2017): 1-10. [21] Buttlar, William G., and Md Shahidul Islam. Integration of smart-phone-based pavement roughness data collection tool with asset management system. No. NEXTRANS Project No. 098IY04. 2014. [22] Zang K, Shen J, Huang H, et al. Assessing and mapping of road surface roughness based on GPS and accelerometer sensors on bicycle-mounted smartphones[J]. Sensors, 2018, 18(3): 914. [23] Gamage, Deshan, H. R. Pasindu, and Saman Bandara. 'Pavement Roughness Evaluation Method for Low Volume Roads.' Proc. of the Eighth Intl. Conf. on Maintenance and Rehabilitation of Pavements. 2016. [24] Allaire, F., and T. Hanson. 'Potential of road roughness data from smartphones as an input to spring weight restriction decision-making.' TAC 2017: Investing in Transportation: Building Canada's Economy--2017 Conference and Exhibition of the Transportation Association of Canada. 2017. [25] El-Wakeel, Amr S., et al. 'Road Test Experiments and Statistical Analysis for Real-Time Monitoring of Road Surface Conditions.' GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE, 2017. [26] Shelke, Vishal, et al. 'Study of Estimation of Road Roughness Condition and Ghat Complexity Analysis Using Smartphone Sensors.' (2017). [27] Bränn, Jesper. 'Smartphone sensors are sufficient to measure smoothness of car driving.' (2017). [28] Li, Xiao, and Daniel W. Goldberg. 'Toward a mobile crowdsensing system for road surface assessment.' Computers, Environment and Urban Systems (2018). [29] Tsurushiro, Junichi, and Tomotaka Nagaosa. 'Vehicle localization using its vibration caused by road surface roughness.' Vehicular Electronics and Safety (ICVES), 2015 IEEE International Conference on. IEEE, 2015. [30] http://www.sohu.com/a/139324966_288206 [31] Chou, Chia-Pei, Po-Kai Ku, and Ai-Chin Chen. Systematic Assessment of Factors Affecting the Acceleration-Based Method of Pavement Roughness Evaluation. No. 17-04209. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71310 | - |
| dc.description.abstract | 近年來,道路平整度受到越來越多公務機關及道路養護單位之重視,但主要檢測儀器如三米直規量測速度過慢,耗費人力物力,因此使用者已經普遍放棄使用三米直規作為檢測工具。而現階段普遍使用之平整度檢測儀器以慣性式剖面儀為主,可以在任何地區、任何車型下量測得到穩定均一之國際糙度指標IRI。但受限於其量測過程繁瑣,需要專業車輛與設備才可進行,同時檢測費用亦相對高昂,因此無法對所有道路均進行IRI量測。在此背景下,隨著智慧型手機之使用越來越普及,同時智慧型手機兼顧使用者多用途需要,搭載之各類感測器功能日趨完善,因此使用手機進行各類探測亦成為世界各大學之研究方向。以手機搭載之三軸加速度規、陀螺儀與GPS等感測器作為數據蒐集方法,通過手機跟隨車輛震動方式,對路面震動狀況進行量測。
而目前針對手機之研究均發現其與國際糙度指標IRI有較好之相關性,因此本文延續各類研究中普遍所使用之加速度均方根指標(ARI)作為與IRI比較之指標,同時以IRI作為基準指標進行比較,以尋找ARI與IRI相關性提升之方法。通過對加速度數據進行濾波處理,同時進行速度校正,可以使ARI與IRI之相關性達到最佳0.86以上。在此基礎上,考量手機日後之用途為開放給民眾使用之問題,通過使用手機三軸加速度之方法,解決不同民眾手機擺放角度之問題,確保手機在任何擺放狀態下均可得到均一結果。而在後期大量數據蒐集處理過程中,由於手機廠牌、車型、擺放位置等各類組合均會導致量測結果不一,針對此情況進行大數據處理邏輯研擬,確定量測道路起始點GPS後再進行數據分析之邏輯,並對不同類別數據進行分類處理,最終根據其數據差異進行線性調整,使不同手機之數據可以得到統一結果。在數據調整過程中,亦考慮異常數據處理與非連續路段數據整合之問題,使手機數據經過大數據處理後會得到與IRI更好之相關性。 | zh_TW |
| dc.description.abstract | In recent years, the measurement of road roughness has received more and more attention from public agencies. However, the main testing equipment such as the initial profiler, which can measured the international roughness index IRI, is commonly used at this stage, However, due to the cumbersome measurement process, which requires professional vehicles and equipment to be carried out, and the relatively high cost of testing, it is impossible to measure the IRI on all roads. thus, the use of mobile phones for road roughness detection has also become a new tendency. The smartphone is equipped with three-axis accelerometers, gyroscopes, and GPS detectors to collect the vehicle vibration data relate to the road roughness, to measure the road vibration conditions.
The current research on mobile phones has found that it has a good correlation with the IRI. Therefore, this article continues to use the acceleration root mean square index (ARI) which is commonly used in various researches as an index to compare with IRI. In this research, the relevance of ARI and IRI has been improved to 0.86 through filtering. Based on this, considering the future use of smartphones as crowdsourcing for the public, tri-axial acceleration of mobile phones are used to solve the problem of different people's mobile phone placement angles. In the process of large-scale data collection, big data processing logic is developed to determine the start of measuring roads., the logic of data analysis is performed with GPS location, and different types of data are classified, then the finally linear adjustment is performed according to the ANOVA analysis of different data, so that the data from different smartphones can be unified. In the process of data adjustment, the data integration of abnormal data processing and discontinuous road sections is also considered, so that after the big data processing, the smartphones’ data will get a better correlation with IRI. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:04:15Z (GMT). No. of bitstreams: 1 ntu-107-R05521532-1.pdf: 3882199 bytes, checksum: 60c63c084d203f4e591cd793ab7cbe5a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目录 1
圖目錄 7 表目錄 9 Abstract 10 摘要 11 第1章 緒論 12 1.1 研究背景與動機 12 1.2 研究目之 14 1.3 研究方法與流程 14 第2章 文獻回顧 16 2.1 平坦度量測方式 16 2.2 國內外平坦度指標 18 2.3 以手機評估鋪面平坦度之相關研究 20 2.3.1 根據加速度指標進行道路平整度相關研究 21 2.3.2 手機量測應用於人行區域與低等級道路平整度量測 24 2.3.3 以手機多筆數據進行分析與長期觀測方法 25 2.3.4 手機進行車輛狀態檢測 26 2.4 文獻回顧小結 27 第3章 手機感測器使用與加速度指標建立 29 3.1 手機量測路面震動之方法與設備 29 3.2 加速度指標選擇 33 3.3 加速度指標ARI之精進算法 34 第4章 ARI之影響因素 40 4.1 手機擺放角度影響修正 40 4.1.1 角度模型與手機一致性比較 40 4.1.2 手機角度之影響與消除辦法 42 4.2 手機量測之手機固定方式影響 47 4.3 手機量測之手機型號差異比較 51 4.4 手機截取頻率對ARI計算差異之影響 56 4.5 手機來電震動對量測結果之影響 62 第5章 數據處理 65 5.1 大量手機傳輸加速度資料分析方法 65 5.1.1 數據標準化方法 66 5.1.2 數據分類方法 70 5.2 大數據資料之異常值剔除 78 5.2.1 對原始數據直接進行異常值剔除 78 5.2.2 對分類平均後數據進行異常值剔除 80 5.3 非連續路段資料匯總方法 83 5.4 高速公路實例分析 87 5.5 手機量測路面平整度之展示方式 91 第6章 結論與建議 95 6.1 結論 95 6.2 建議 96 參考文獻 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 智慧型手機 | zh_TW |
| dc.subject | 平整度 | zh_TW |
| dc.subject | 角度影響 | zh_TW |
| dc.subject | 大數據處理 | zh_TW |
| dc.subject | smartphone | en |
| dc.subject | data processing | en |
| dc.subject | road roughness | en |
| dc.title | 應用智慧型手機檢測道路平整度之演算邏輯 | zh_TW |
| dc.title | The algorithm of using smartphone to measure road roughness | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳怡先(Yi-Hsien Chen),陳建旭(Jian-Shiuh Chen) | |
| dc.subject.keyword | 智慧型手機,平整度,角度影響,大數據處理, | zh_TW |
| dc.subject.keyword | smartphone,road roughness,data processing, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201801754 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
