Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71269
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學
dc.contributor.authorYu-Hua Laien
dc.contributor.author賴又華zh_TW
dc.date.accessioned2021-06-17T05:02:00Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citation1. Lui WY, Mruk D, Lee WM, Cheng CY. Sertoli cell tight junction dynamics: their regulation during spermatogenesis. Biol Reprod 2003; 68:1087-1097.
2. Mruk DD, Cheng CY. Tight junctions in the testis: new perspectives. Philos Trans R Soc Lond B Biol Sci 2010; 365:1621-1635.
3. Widmaier EP, Raff H, Strang KT, Vander AJ. Vander's human physiology. McGraw-Hill; 2014.
4. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of Testicular Function. 2010:11-59.
5. Haschek WM, Rousseaux CG, Wallig MA. Fundamentals of Toxicologic Pathology. Elsevier Science; 2009.
6. Soares JM, Avelar GF, Franca LR. The seminiferous epithelium cycle and its duration in different breeds of dog (Canis familiaris). J Anat 2009; 215:462-471.
7. Samper JC. Equine Breeding Management and Artificial Insemination. Saunders/Elsevier; 2009.
8. Franca LR, Avelar GF, Almeida FF. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 2005; 63:300-318.
9. Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev 2012; 64:16-64.
10. Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10.
11. Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology 2014; 740:364-378.
12. Einhorn LH. Curing metastatic testicular cancer. Proc Natl Acad Sci U S A 2002; 99:4592-4595.
13. Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015; 237:219-227.
14. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7:573-584.
15. Jamieson ER, Lippard SJ. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chem Rev 1999; 99:2467-2498.
16. Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, Doetsch PW. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 2013; 8:e81162.
17. Yang Y, Liu H, Liu F, Dong Z. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 2014; 88:1249-1256.
18. Cullen KJ, Yang Z, Schumaker L, Guo Z. Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 2007; 39:43-50.
19. Florea A-M, Büsselberg D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011; 3:1351-1371.
20. Arany I, Safirstein RL. Cisplatin nephrotoxicity. Seminars in Nephrology 2003; 23:460-464.
21. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2009; 296:F505-511.
22. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel) 2010; 2:2490-2518.
23. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 2005; 23:8588-8596.
24. Langer T, am Zehnhoff-Dinnesen A, Radtke S, Meitert J, Zolk O. Understanding platinum-induced ototoxicity. Trends Pharmacol Sci 2013; 34:458-469.
25. Mukherjea D, Jajoo S, Sheehan K, Kaur T, Sheth S, Bunch J, Perro C, Rybak LP, Ramkumar V. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxid Redox Signal 2011; 14:999-1010.
26. Avan A, Postma TJ, Ceresa C, Avan A, Cavaletti G, Giovannetti E, Peters GJ. Platinum-induced neurotoxicity and preventive strategies: past, present, and future. Oncologist 2015; 20:411-432.
27. Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol 2012; 82:51-77.
28. Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L, Windebank AJ. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 2011; 41:661-668.
29. Aabo K, Adams M, Adnitt P, Alberts DS, Athanazziou A, Barley V, Bell DR, Bianchi U, Bolis G, Brady MF, Brodovsky HS, Bruckner H, et al. Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 37 randomized trials. Advanced Ovarian Cancer Trialists' Group. Br J Cancer 1998; 78:1479-1487.
30. Pont J, Albrecht W. Fertility after chemotherapy for testicular germ cell cancer. Fertil Steril 1997; 68:1-5.
31. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr 2005:12-17.
32. Harman JG, Richburg JH. Cisplatin-induced alterations in the functional spermatogonial stem cell pool and niche in C57/BL/6J mice following a clinically relevant multi-cycle exposure. Toxicol Lett 2014; 227:99-112.
33. Yamaguchi K, Ishikawa T, Kondo Y, Fujisawa M. Cisplatin regulates Sertoli cell expression of transferrin and interleukins. Mol Cell Endocrinol 2008; 283:68-75.
34. Garcia MM, Acquier A, Suarez G, Gomez NV, Gorostizaga A, Mendez CF, Paz C. Cisplatin inhibits testosterone synthesis by a mechanism that includes the action of reactive oxygen species (ROS) at the level of P450scc. Chem Biol Interact 2012; 199:185-191.
35. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, Ahmadi A, Baeeri M, Mohammadirad A, Abdollahi M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol 2013; 266:356-365.
36. Sawhney P, Giammona CJ, Meistrich ML, Richburg JH. Cisplatin-induced long-term failure of spermatogenesis in adult C57/Bl/6J mice. J Androl 2005; 26:136-145.
37. Meistrich ML, Finch M, da Cunha MF, Hacker U, Au WW. Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res 1982; 42:122-131.
38. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril 2013; 100:1180-1186.
39. Pogach LM, Lee Y, Gould S, Giglio W, Meyenhofer M, Huang HF. Characterization of cis-platinum-induced Sertoli cell dysfunction in rodents. Toxicol Appl Pharmacol 1989; 98:350-361.
40. Boekelheide K. Mechanisms of toxic damage to spermatogenesis. J Natl Cancer Inst Monogr 2005:6-8.
41. Fiorini C, Tilloy-Ellul A, Chevalier S, Charuel C, Pointis G. Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 2004; 18:413-421.
42. Soni KK, Kim HK, Choi BR, Karna KK, You JH, Cha JS, Shin YS, Lee SW, Kim CY, Park JK. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Devel Ther 2016; 10:3959-3968.
43. Garcia JM, Chen JA, Guillory B, Donehower LA, Smith RG, Lamb DJ. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice. Biol Reprod 2015; 93:24.
44. Ahmed EA, Omar HM, elghaffar S, Ragb SM, Nasser AY. The antioxidant activity of vitamin C, DPPD and L-cysteine against Cisplatin-induced testicular oxidative damage in rats. Food Chem Toxicol 2011; 49:1115-1121.
45. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39:44-84.
46. Agarwal A, Virk G, Ong C, du Plessis SS. Effect of Oxidative Stress on Male Reproduction. The World Journal of Men's Health 2014; 32:1.
47. Brieger K, Schiavone S, Miller FJ, Jr., Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly 2012; 142:w13659.
48. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015; 4:180-183.
49. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-Induced Oxidative Stress and Toxicity. Journal of Toxicology 2012; 2012:1-13.
50. Agarwal A, Prabakaran S, Allamaneni S. What an andrologist/urologist should know about free radicals and why. Urology 2006; 67:2-8.
51. Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH. Increase of oxidative stress in human sperm with lower motility. Fertil Steril 2008; 89:1183-1190.
52. Rajesh Kumar T, Doreswamy K, Shrilatha B, Muralidhara. Oxidative stress associated DNA damage in testis of mice: induction of abnormal sperms and effects on fertility. Mutat Res 2002; 513:103-111.
53. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014; 28:684-703.
54. Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertility and Sterility 2014; 102:1518-1527.
55. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 2011; 14:367-381.
56. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 2008; 93:3199-3207.
57. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J 2011; 436:687-698.
58. Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med 2010; 48:112-119.
59. Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 1998; 59:1037-1046.
60. Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol 2014; 12:112.
61. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev 2008; 1:15-24.
62. Mruk DD, Silvestrini B, Mo MY, Cheng CY. Antioxidant superoxide dismutase - a review: its function, regulation in the testis, and role in male fertility. Contraception 2002; 65:305-311.
63. Zini A, Schlegel PN. Catalase mRNA expression in the male rat reproductive tract. J Androl 1996; 17:473-480.
64. Zini A, Schlegel PN. Expression of glutathione peroxidases in the adult male rat reproductive tract. Fertil Steril 1997; 68:689-695.
65. Baek IJ, Seo DS, Yon JM, Lee SR, Jin Y, Nahm SS, Jeong JH, Choo YK, Kang JK, Lee BJ, Yun YW, Nam SY. Tissue expression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. J Mol Histol 2007; 38:237-244.
66. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z. Role of selenium in male reproduction - a review. Anim Reprod Sci 2014; 146:55-62.
67. Kaur P, Bansal MP. Influence of selenium induced oxidative stress on spermatogenesis and lactate dehydrogenase-X in mice testis. Asian J Androl 2004; 6:227-232.
68. Bansal AK, Bilaspuri GS. Impacts of Oxidative Stress and Antioxidants on Semen Functions. Veterinary Medicine International 2011; 2011:1-7.
69. Sabuncuoglu S, Eken A, Aydin A, Ozgunes H, Orhan H. Cofactor metals and antioxidant enzymes in cisplatin-treated rats: effect of antioxidant intervention. Drug Chem Toxicol 2015; 38:375-382.
70. Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 2009; 11:1139-1148.
71. Shen J-L, Man K-M, Huang P-H, Chen W-C, Chen D-C, Cheng Y-W, Liu P-L, Chou M-C, Chen Y-H. Honokiol and Magnolol as Multifunctional Antioxidative Molecules for Dermatologic Disorders. Molecules 2010; 15:6452-6465.
72. Liou K-T, Shen Y-C, Chen C-F, Tsao C-M, Tsai S-K. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. European Journal of Pharmacology 2003; 475:19-27.
73. Huang KH, Weng TI, Huang HY, Huang KD, Lin WC, Chen SC, Liu SH. Honokiol attenuates torsion/detorsion-induced testicular injury in rat testis by way of suppressing endoplasmic reticulum stress-related apoptosis. Urology 2012; 79:967 e965-911.
74. Loong CC, Chiu JH, Tiao RC, Chiu YY, Wu CW, Lui WY. Protective effect of magnolol on the small intestinal ischemia-reperfusion injury. Transplant Proc 2002; 34:2679-2680.
75. Hu Z, Bian X, Liu X, Zhu Y, Zhang X, Chen S, Wang K, Wang Y. Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res 2013; 1491:204-212.
76. Amorati R, Zotova J, Baschieri A, Valgimigli L. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. J Org Chem 2015; 80:10651-10659.
77. Dikalov S, Losik T, Arbiser JL. Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochem Pharmacol 2008; 76:589-596.
78. Yan B, Peng ZY. Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line. Int J Clin Exp Med 2015; 8:5454-5461.
79. Mannal PW, Schneider J, Tangada A, McDonald D, McFadden DW. Honokiol produces anti-neoplastic effects on melanoma cells in vitro. J Surg Oncol 2011; 104:260-264.
80. Cho JH, Jeon YJ, Park SM, Shin JC, Lee TH, Jung S, Park H, Ryu J, Chen H, Dong Z, Shim JH, Chae JI. Multifunctional effects of honokiol as an anti-inflammatory and anti-cancer drug in human oral squamous cancer cells and xenograft. Biomaterials 2015; 53:274-284.
81. Lin JM, Prakasha Gowda AS, Sharma AK, Amin S. In vitro growth inhibition of human cancer cells by novel honokiol analogs. Bioorg Med Chem 2012; 20:3202-3211.
82. Cheng N, Xia T, Han Y, He QJ, Zhao R, Ma JR. Synergistic antitumor effects of liposomal honokiol combined with cisplatin in colon cancer models. Oncol Lett 2011; 2:957-962.
83. Liu Y, Chen L, He X, Fan L, Yang G, Chen X, Lin X, Du L, Li Z, Ye H, Mao Y, Zhao X, et al. Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. Int J Gynecol Cancer 2008; 18:652-659.
84. Liu H, Zang C, Emde A, Planas-Silva MD, Rosche M, Kuhnl A, Schulz CO, Elstner E, Possinger K, Eucker J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur J Pharmacol 2008; 591:43-51.
85. Liu HT. Investigate the Effects of Honokiol on Cisplatin-Induced Nephrotoxicity: From Cytoskeleton Alterations to Cell Polarity Maintenance. National Taiwan University; 2017.
86. Seaman F, Sawhney P, Giammona CJ, Richburg JH. Cisplatin-induced pulse of germ cell apoptosis precedes long-term elevated apoptotic rates in C57/BL/6 mouse testis. Apoptosis 2003; 8:101-108.
87. Dere E, Anderson LM, Hwang K, Boekelheide K. Biomarkers of chemotherapy-induced testicular damage. Fertil Steril 2013; 100:1192-1202.
88. Dere E, Spade DJ, Hall SJ, Altemus A, Smith JD, Phillips JA, Moffit JS, Blanchard KT, Boekelheide K. Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds. Toxicol Appl Pharmacol 2017; 320:1-7.
89. Levi M, Hasky N, Stemmer SM, Shalgi R, Ben-Aharon I. Anti-Mullerian Hormone Is a Marker for Chemotherapy-Induced Testicular Toxicity. Endocrinology 2015; 156:3818-3827.
90. Johnsen SG. Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1970; 1:2-25.
91. Creasy DM. Histopathology of the male reproductive system II: interpretation. Curr Protoc Toxicol 2002; Chapter 16:Unit16.14.
92. Oshio S, Tomomasa H, Amemiya H, Yazaki T, Mohri H, Umeda T, Waku M. Damaging effects of cisplatin on mouse spermatozoa. Arch Androl 1990; 24:113-120.
93. Wang TJ, Liu HT, Lai YH, Jan TR, Nomura N, Chang HW, Chou CC, Lee YJ, Tsai PJ. Honokiol, a Polyphenol Natural Compound, Attenuates Cisplatin-Induced Acute Cytotoxicity in Renal Epithelial Cells Through Cellular Oxidative Stress and Cytoskeleton Modulations. Front Pharmacol 2018; 9:357.
94. Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, Hu X. Honokiol: A potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 2004; 10:3459-3463.
95. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP. Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 2012; 12:1244-1252.
96. Wang XH, Cai LL, Zhang XY, Deng LY, Zheng H, Deng CY, Wen JL, Zhao X, Wei YQ, Chen LJ. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int J Pharm 2011; 410:169-174.
97. Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of Substances to Laboratory Animals: Routes of Administration and Factors to Consider. J Am Assoc Lab Anim Sci 2011; 50:600-613.
98. Domitrovic R, Tota M, Milin C. Oxidative stress in mice: effects of dietary corn oil and iron. Biol Trace Elem Res 2006; 113:177-191.
99. Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, Kim HJ, Jeong H, Kim HM, Hwang D, Kim HS, Choi S. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation. PLoS One 2015; 10:e0135083.
100. Wang Y, Zhang ZZ, Wu Y, Zhan J, He XH, Wang YL. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp Ther Med 2013; 5:315-319.
101. Miyamoto Y, Koh YH, Park YS, Fujiwara N, Sakiyama H, Misonou Y, Ookawara T, Suzuki K, Honke K, Taniguchi N. Oxidative stress caused by inactivation of glutathione peroxidase and adaptive responses. Biol Chem 2003; 384:567-574.
102. Spitz DR, Phillips JW, Adams DT, Sherman CM, Deen DF, Li GC. Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol 1993; 156:72-79.
103. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press; 2015.
104. Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal 2009; 11:2701-2716.
105. Mistry P, Kelland LR, Abel G, Sidhar S, Harrap KR. The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer 1991; 64:215-220.
106. Apak R, Guclu K, Ozyurek M, Karademir SE, Altun M. Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 2005; 39:949-961.
107. Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 2010; 49:503-515.
108. Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E, García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. European Archives of Oto-Rhino-Laryngology 2012; 269:2455-2459.
109. Kumar A, Kumar Singh U, Chaudhary A. Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities. Future Med Chem 2013; 5:809-829.
110. Jiang QQ, Fan LY, Yang GL, Guo WH, Hou WL, Chen LJ, Wei YQ. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer 2008; 8:242.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71269-
dc.description.abstractCisplatin 或是 cis-diamminedichloroplatinum [II]是一種含鉑的抗癌藥物,廣泛使用於治療多種的癌症,包括卵巢癌、睪丸癌以及頭頸部的固態實質瘤,然而在雄性中cisplatin所衍生的其中一個副作用為睪丸毒性,其在睪丸造成的傷害包含生殖上皮的細胞凋亡、長時間的無精症和睪丸萎縮。雖然目前對於cisplatin造成的睪丸毒性機制尚未全面瞭解,許多研究認為氧化緊迫為 cisplatin引起細胞毒性的重要原因之一。
異厚朴酚為雙酚類化合物萃取自Magnolia officinalis 樹皮,其早已廣泛使用於中草藥,它具有多種生物活性包括抗過敏、抗癌、抗焦慮、抗憂鬱以及抗氧化。其中,異厚朴酚被證實具有良好的抗氧化功效且其抗氧化功效為維他命E的1000倍,因此異厚圤酚有機會可以用於減緩cisplatin造成的睪丸毒性。
本篇研究藉由cisplatin誘發睪丸毒性的老鼠動物模式與活體外TM4睪丸賽特利細胞測試來探討異厚朴酚的保護效果。在小鼠的活體試驗中,我們發現cisplatin會造成睪丸細精小管中生殖上皮細胞的嚴重減少,而在給予異厚朴酚的組別中則觀察到生殖上皮細胞的傷害較為趨緩。另外,相較於cisplatin的組別發現精子總量下降,在給予異厚朴酚的組別中有較多的精子儲存在尾端附睪的管腔中(cisplatin和cisplatin加上異厚圤酚分別為13.8% 和62.2%)。 此外,在cisplatin加上異厚朴酚的組別,我們觀察到氧化損傷蛋白8-OHdG和細胞凋亡指標蛋白caspase-3的減少,而在TM4賽特利細胞的活體外研究中則發現異厚朴酚可以有效的降低cisplatin所造成的活性氧化物生成。綜合以上的結果,我們認為異厚朴酚具有減緩cisplatin所引起之睪丸毒性的潛力,其保護效果可能來自減少氧化損傷和細胞凋亡。
zh_TW
dc.description.abstractCisplatin (cis-diamminedichloroplatinum [II]) is a platinum-containing drug widely used for chemotherapy to efficaciously treat various cancers, including ovarian and testicular cancers, and solid tumors of the head and neck. In male, one of its associated side effects is testicular toxicity. The side effects observed in the testis after cisplatin administration are germ cell apoptosis, long–lasting azoospermia, and testicular atrophy. Although the underlying mechanism of cisplatin-induced testicular toxicity is not fully understood, many studies suggested that oxidative stress might be involved in cisplatin-induced toxicity.
Honokiol (HNK) is a biphenolic compound obtained from the bark of Magnolia officinalis which has been widely used in Chinese medicine. HNK exhibits multiple bioactivities, including anti-allergy, anti-anxiety, anti-cancer, anti-depression, and anti-oxidation. Moreover, HNK is a highly effective antioxidant which is 1000 times more effected than the Vitamin E. Therefore, HNK might be a promising compound to minimize the testicular toxicity caused by cisplatin.
In this study, we examined the effect of HNK using both in vivo cisplatin-induced testicular injury mouse model and in vitro mouse sertoli cells (TM4) culture-based analyses. In the cisplatin-induced testicular injury mouse model, a significant decrease of spermatogenic cells in the seminiferous tubules was observed after cisplatin administration. Interestingly, with HNK supplementation, the testicular structure (layers of the cells) was less damaged. In the epididymis, the presence of sperm cells in the cauda lumen was evaluated. In contrast to cisplatin-treated group, when HNK was used in combination with cisplatin, a higher percentage (13.8% vs. 62.2% for cisplatin and cisplatin/HNK group, respectively) of sperm cells were observed in the epididymal lumen. Furthermore, in cisplatin/HNK group, we observed a decreased level of 8-hydroxyguanosine expression, a DNA oxidative stress marker, and caspase-3, an apoptosis marker. From in vitro study, cisplatin/HNK incubation decreased the generation of reactive oxygen species in TM4 cells. We hypothesize that HNK can potentially be used to reduce cisplatin-induced testicular toxicity, based on data presented in this thesis, the protective effect of HNK seems to be related to the suppression of oxidative stress and anti-apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:02:00Z (GMT). No. of bitstreams: 1
ntu-107-R05629012-1.pdf: 4797939 bytes, checksum: 051e87595ac169cf4a9c74a9aa2c601c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
Abstract ii
中文摘要 iv
Contents vi
List of Figures ix
List of Table xi
Chapter 1 Introduction 1
1.1 General testicular structure and its physiological functions 1
1.2 Introduction of cisplatin 2
1.2.1 Cellular action 4
1.2.2 Side effects and alternative platinum compounds 4
1.2.3 The effects of cisplatin in testis 6
1.3 Oxidative stress and antioxidant 9
1.3.1 Physiology role of reactive oxygen species (ROS) in male reproduction 9
1.3.2 The effects of oxidative stress in male reproduction 9
1.3.3 Antioxidant system in male reproductive organs 11
1.4 Honokiol 13
1.4.1 Anti-oxidative stress 13
1.4.2 Anti-cancer 14
1.5 The scope of this thesis 14
Chapter 2 Materials and Methods 16
2.1 Chemicals, reagents, antibodies 16
2.2 Establishment of cisplatin-induced testicular injury mouse model 16
2.3 Sample collection 19
2.4 Histological evaluations of testicular damage 20
2.5 Antioxidant assays 21
2.6 Indirect immunofluorescence (IFA) staining 22
2.7 Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay 23
2.8 Immuno-blotting 24
2.9 Cell line and cell culture 25
2.10 Cell viability assay (MTT assay) 25
2.11 Determination of intracellular ROS production 26
2.12 Statistical analysis 26
Chapter 3 Results 28
3. 1 Cisplatin-induced testicular injury mouse models 28
3. 1.1 3-week mouse model 28
3. 1. 2 6-week mouse model 32
3.2 Honokiol reduced the formation of 8-OHdG after cisplatin treatment 34
3.3 Honokiol attenuated the cisplatin-induced apoptosis 36
3.4 Honokiol did not increased the antioxidant ability in the testis 39
3.5 Cell viability assay of cisplatin and HNK in TM4 cells 39
3.6 Honokiol reduced the intracellular ROS level caused by cisplatin in TM4 cells 41
Chapter 4 Discussion 46
Chapter 5 Conclusions and future work 58
Reference 59
dc.language.isoen
dc.title探討異厚朴酚對於Cisplatin造成之睪丸毒性之影響zh_TW
dc.titleInvestigate the Effects of Honokiol on Cisplatin-Induced Testicular Toxicityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李勝祥,詹東榮,李雅珍,張惠雯
dc.subject.keywordcisplatin,異厚朴酚,睪丸毒性,活性氧化物,抗氧化物,zh_TW
dc.subject.keywordcisplatin,honokiol,testicular toxicity,ROS,antioxidant,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201801924
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved