Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同(Shih-Torng Ding)
dc.contributor.authorChi-Chang Huangen
dc.contributor.author黃啟彰zh_TW
dc.date.accessioned2021-06-17T05:01:24Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-24
dc.identifier.citationAapro, M., Arends, J., Bozzetti, F., Fearon, K., Grunberg, S.M., Herrstedt, J., Hopkinson, J., Jacquelin-Ravel, N., Jatoi, A., Kaasa, S., et al. (2014). Early recognition of malnutrition and cachexia in the cancer patient: a position paper of a European School of Oncology Task Force. Ann Oncol 25, 1492-1499.
Acharyya, S., Ladner, K.J., Nelsen, L.L., Damrauer, J., Reiser, P.J., Swoap, S., and Guttridge, D.C. (2004). Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114, 370-378.
Agustsson, T., Ryden, M., Hoffstedt, J., van Harmelen, V., Dicker, A., Laurencikiene, J., Isaksson, B., Permert, J., and Arner, P. (2007). Mechanism of increased lipolysis in cancer cachexia. Cancer Res 67, 5531-5537.
Ando, K., Takahashi, F., Kato, M., Kaneko, N., Doi, T., Ohe, Y., Koizumi, F., Nishio, K., and Takahashi, K. (2014). Tocilizumab, a proposed therapy for the cachexia of Interleukin6-expressing lung cancer. PLoS One 9, e102436.
Anker, S.D., and Sharma, R. (2002). The syndrome of cardiac cachexia. Int J Cardiol 85, 51-66.
Attaix, D., and Bechet, D. (2007). FoxO3 controls dangerous proteolytic liaisons. Cell Metab 6, 425-427.
Aune, U.L., Ruiz, L., and Kajimura, S. (2013). Isolation and differentiation of stromal vascular cells to beige/brite cells. J Vis Exp.
Aversa, Z., Pin, F., Lucia, S., Penna, F., Verzaro, R., Fazi, M., Colasante, G., Tirone, A., Rossi Fanelli, F., Ramaccini, C., et al. (2016). Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci Rep 6, 30340.
Balaban, S., Shearer, R.F., Lee, L.S., van Geldermalsen, M., Schreuder, M., Shtein, H.C., Cairns, R., Thomas, K.C., Fazakerley, D.J., Grewal, T., et al. (2017). Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5, 1.
Balkwill, F., Osborne, R., Burke, F., Naylor, S., Talbot, D., Durbin, H., Tavernier, J., and Fiers, W. (1987). Evidence for tumour necrosis factor/cachectin production in cancer. Lancet 2, 1229-1232.
Barton, M.K. (2017). Cancer cachexia awareness, diagnosis, and treatment are lacking among oncology providers. CA Cancer J Clin 67, 91-92.
Batista, M.L., Jr., Henriques, F.S., Neves, R.X., Olivan, M.R., Matos-Neto, E.M., Alcantara, P.S., Maximiano, L.F., Otoch, J.P., Alves, M.J., and Seelaender, M. (2016). Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 7, 37-47.
Bing, C., Brown, M., King, P., Collins, P., Tisdale, M.J., and Williams, G. (2000). Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res 60, 2405-2410.
Bing, C., Russell, S., Becket, E., Pope, M., Tisdale, M.J., Trayhurn, P., and Jenkins, J.R. (2006). Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer 95, 1028-1037.
Bodine, S.C., and Baehr, L.M. (2014). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307, E469-484.
Bosaeus, I., Daneryd, P., Svanberg, E., and Lundholm, K. (2001). Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer 93, 380-383.
Bourdel-Marchasson, I., Blanc-Bisson, C., Doussau, A., Germain, C., Blanc, J.F., Dauba, J., Lahmar, C., Terrebonne, E., Lecaille, C., Ceccaldi, J., et al. (2014). Nutritional advice in older patients at risk of malnutrition during treatment for chemotherapy: a two-year randomized controlled trial. PLoS One 9, e108687.
Buijs, J.T., Stayrook, K.R., and Guise, T.A. (2011). TGF-beta in the Bone Microenvironment: Role in Breast Cancer Metastases. Cancer Microenviron 4, 261-281.
Burckart, K., Beca, S., Urban, R.J., and Sheffield-Moore, M. (2010). Pathogenesis of muscle wasting in cancer cachexia: targeted anabolic and anticatabolic therapies. Curr Opin Clin Nutr Metab Care 13, 410-416.
Cai, D., Frantz, J.D., Tawa, N.E., Jr., Melendez, P.A., Oh, B.C., Lidov, H.G., Hasselgren, P.O., Frontera, W.R., Lee, J., Glass, D.J., et al. (2004). IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119, 285-298.
Cao, D.X., Wu, G.H., Yang, Z.A., Zhang, B., Jiang, Y., Han, Y.S., He, G.D., Zhuang, Q.L., Wang, Y.F., Huang, Z.L., et al. (2010). Role of beta1-adrenoceptor in increased lipolysis in cancer cachexia. Cancer Sci 101, 1639-1645.
Chan, G.K., Deckelbaum, R.A., Bolivar, I., Goltzman, D., and Karaplis, A.C. (2001). PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway. Endocrinology 142, 4900-4909.
Cheloha, R.W., Gellman, S.H., Vilardaga, J.P., and Gardella, T.J. (2015). PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat Rev Endocrinol 11, 712-724.
Chen, Y.J., Liu, H.Y., Chang, Y.T., Cheng, Y.H., Mersmann, H.J., Kuo, W.H., and Ding, S.T. (2016). Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues. J Vis Exp, e53886.
Chida, D., Osaka, T., Hashimoto, O., and Iwakura, Y. (2006). Combined interleukin-6 and interleukin-1 deficiency causes obesity in young mice. Diabetes 55, 971-977.
Ciftci, R., Tas, F., Yasasever, C.T., Aksit, E., Karabulut, S., Sen, F., Keskin, S., Kilic, L., Yildiz, I., Bozbey, H.U., et al. (2014). High serum transforming growth factor beta 1 (TGFB1) level predicts better survival in breast cancer. Tumour Biol 35, 6941-6948.
Coort, S.L., Coumans, W.A., Bonen, A., van der Vusse, G.J., Glatz, J.F., and Luiken, J.J. (2005). Divergent effects of rosiglitazone on protein-mediated fatty acid uptake in adipose and in muscle tissues of Zucker rats. J Lipid Res 46, 1295-1302.
Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., Kuo, F.C., Palmer, E.L., Tseng, Y.H., Doria, A., et al. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 1509-1517.
Dahlman, I., Mejhert, N., Linder, K., Agustsson, T., Mutch, D.M., Kulyte, A., Isaksson, B., Permert, J., Petrovic, N., Nedergaard, J., et al. (2010). Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102, 1541-1548.
Das, S.K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., Gorkiewicz, G., Tamilarasan, K.P., Kumari, P., Trauner, M., et al. (2011). Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233-238.
Deans, D.A., Wigmore, S.J., Gilmour, H., Paterson-Brown, S., Ross, J.A., and Fearon, K.C. (2006). Elevated tumour interleukin-1beta is associated with systemic inflammation: A marker of reduced survival in gastro-oesophageal cancer. Br J Cancer 95, 1568-1575.
Denduluri, S.K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M.K., Ye, J., Wei, Q., Wang, J., Zhao, L., et al. (2015). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2, 13-25.
Eder, K., Baffy, N., Falus, A., and Fulop, A.K. (2009). The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 58, 727-736.
Egerman, M.A., and Glass, D.J. (2014). Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49, 59-68.
Elia, M., Zed, C., Neale, G., and Livesey, G. (1987). The energy cost of triglyceride-fatty acid recycling in nonobese subjects after an overnight fast and four days of starvation. Metabolism 36, 251-255.
Evans, W.J., Morley, J.E., Argiles, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., et al. (2008). Cachexia: a new definition. Clin Nutr 27, 793-799.
Evans, W.K., Makuch, R., Clamon, G.H., Feld, R., Weiner, R.S., Moran, E., Blum, R., Shepherd, F.A., Jeejeebhoy, K.N., and DeWys, W.D. (1985). Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res 45, 3347-3353.
Falconer, J.S., Fearon, K.C., Plester, C.E., Ross, J.A., and Carter, D.C. (1994). Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219, 325-331.
Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., et al. (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489-495.
Fearon, K.C. (1992). The mechanisms and treatment of weight loss in cancer. Proc Nutr Soc 51, 251-265.
Fearon, K.C., Glass, D.J., and Guttridge, D.C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16, 153-166.
Fogelman, D.R., Holmes, H., Mohammed, K., Katz, M.H., Prado, C.M., Lieffers, J., Garg, N., Varadhachary, G.R., Shroff, R., Overman, M.J., et al. (2014). Does IGFR1 inhibition result in increased muscle mass loss in patients undergoing treatment for pancreatic cancer? J Cachexia Sarcopenia Muscle 5, 307-313.
Fouladiun, M., Korner, U., Bosaeus, I., Daneryd, P., Hyltander, A., and Lundholm, K.G. (2005). Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care--correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 103, 2189-2198.
Fredrix, E.W., Soeters, P.B., Wouters, E.F., Deerenberg, I.M., von Meyenfeldt, M.F., and Saris, W.H. (1990). Energy balance in relation to cancer cachexia. Clin Nutr 9, 319-324.
Fredrix, E.W., Soeters, P.B., Wouters, E.F., Deerenberg, I.M., von Meyenfeldt, M.F., and Saris, W.H. (1991). Effect of different tumor types on resting energy expenditure. Cancer Res 51, 6138-6141.
Giatromanolaki, A., Balaska, K., Kalamida, D., Kakouratos, C., Sivridis, E., and Koukourakis, M.I. (2017). Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism. Cancer Biol Med 14, 396-404.
Goran, M.I. (1997). Genetic influences on human energy expenditure and substrate utilization. Behav Genet 27, 389-399.
Grosvenor, M., Bulcavage, L., and Chlebowski, R.T. (1989). Symptoms potentially influencing weight loss in a cancer population. Correlations with primary site, nutritional status, and chemotherapy administration. Cancer 63, 330-334.
Guise, T.A., Yin, J.J., Thomas, R.J., Dallas, M., Cui, Y., and Gillespie, M.T. (2002). Parathyroid hormone-related protein (PTHrP)-(1-139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone 30, 670-676.
Guttridge, D.C., Mayo, M.W., Madrid, L.V., Wang, C.Y., and Baldwin, A.S., Jr. (2000). NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289, 2363-2366.
Hammers, D.W., Merscham-Banda, M., Hsiao, J.Y., Engst, S., Hartman, J.J., and Sweeney, H.L. (2017). Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med 9, 531-544.
Han, J., Meng, Q., Shen, L., and Wu, G. (2018). Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis 17, 14.
Heymsfield, S.B., and Pietrobelli, A. (2010). Body size and human energy requirements: Reduced mass-specific total energy expenditure in tall adults. Am J Hum Biol 22, 301-309.
Hoesel, B., and Schmid, J.A. (2013). The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12, 86.
Hyltander, A., Drott, C., Korner, U., Sandstrom, R., and Lundholm, K. (1991). Elevated energy expenditure in cancer patients with solid tumours. Eur J Cancer 27, 9-15.
Jayatilaka, H., Tyle, P., Chen, J.J., Kwak, M., Ju, J., Kim, H.J., Lee, J.S.H., Wu, P.H., Gilkes, D.M., Fan, R., et al. (2017). Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat Commun 8, 15584.
Kershaw, E.E., Schupp, M., Guan, H.P., Gardner, N.P., Lazar, M.A., and Flier, J.S. (2007). PPARgamma regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab 293, E1736-1745.
Kim, J., and Lee, J. (2017). Role of transforming growth factor-beta in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil 13, 621-626.
Kir, S., Komaba, H., Garcia, A.P., Economopoulos, K.P., Liu, W., Lanske, B., Hodin, R.A., and Spiegelman, B.M. (2016). PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab 23, 315-323.
Kir, S., White, J.P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V.E., and Spiegelman, B.M. (2014). Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100-104.
Klein, S., and Wolfe, R.R. (1990). Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J Clin Invest 86, 1403-1408.
Knudsen, J.G., Murholm, M., Carey, A.L., Bienso, R.S., Basse, A.L., Allen, T.L., Hidalgo, J., Kingwell, B.A., Febbraio, M.A., Hansen, J.B., et al. (2014). Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 9, e84910.
Kraakman, M.J., Kammoun, H.L., Allen, T.L., Deswaerte, V., Henstridge, D.C., Estevez, E., Matthews, V.B., Neill, B., White, D.A., Murphy, A.J., et al. (2015). Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 21, 403-416.
Larsson, S., Jones, H.A., Goransson, O., Degerman, E., and Holm, C. (2016). Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cell Signal 28, 204-213.
Lee, E.G., Boone, D.L., Chai, S., Libby, S.L., Chien, M., Lodolce, J.P., and Ma, A. (2000). Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289, 2350-2354.
Lee, S.J. (2004). Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20, 61-86.
Lee, S.J., and McPherron, A.C. (2001). Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98, 9306-9311.
Li, Y.P. (2003). TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285, C370-376.
Li, Y.P., Schwartz, R.J., Waddell, I.D., Holloway, B.R., and Reid, M.B. (1998). Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J 12, 871-880.
Liberti, M.V., and Locasale, J.W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci 41, 211-218.
Lieffers, J.R., Mourtzakis, M., Hall, K.D., McCargar, L.J., Prado, C.M., and Baracos, V.E. (2009). A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Am J Clin Nutr 89, 1173-1179.
Liu, L.F., Purushotham, A., Wendel, A.A., Koba, K., DeIuliis, J., Lee, K., and Belury, M.A. (2009). Regulation of adipose triglyceride lipase by rosiglitazone. Diabetes Obes Metab 11, 131-142.
Llovera, M., Garcia-Martinez, C., Lopez-Soriano, J., Agell, N., Lopez-Soriano, F.J., Garcia, I., and Argiles, J.M. (1998a). Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett 130, 19-27.
Llovera, M., Garcia-Martinez, C., Lopez-Soriano, J., Carbo, N., Agell, N., Lopez-Soriano, F.J., and Argiles, J.M. (1998b). Role of TNF receptor 1 in protein turnover during cancer cachexia using gene knockout mice. Mol Cell Endocrinol 142, 183-189.
Lok, C. (2015). Cachexia: The last illness. Nature 528, 182-183.
Lorite, M.J., Thompson, M.G., Drake, J.L., Carling, G., and Tisdale, M.J. (1998). Mechanism of muscle protein degradation induced by a cancer cachectic factor. Br J Cancer 78, 850-856.
Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, P., Burden, S.J., Di Lisi, R., Sandri, C., Zhao, J., et al. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6, 458-471.
Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.
Morley, J.E., Thomas, D.R., and Wilson, M.M. (2006). Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83, 735-743.
Mourkioti, F., Kratsios, P., Luedde, T., Song, Y.H., Delafontaine, P., Adami, R., Parente, V., Bottinelli, R., Pasparakis, M., and Rosenthal, N. (2006). Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116, 2945-2954.
Mourkioti, F., and Rosenthal, N. (2008). NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl) 86, 747-759.
Murphy, R.A., Wilke, M.S., Perrine, M., Pawlowicz, M., Mourtzakis, M., Lieffers, J.R., Maneshgar, M., Bruera, E., Clandinin, M.T., Baracos, V.E., et al. (2010). Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin Nutr 29, 482-487.
Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R., Sweeney, H.L., and Rosenthal, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27, 195-200.
Nieman, K.M., Kenny, H.A., Penicka, C.V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M.R., Romero, I.L., Carey, M.S., Mills, G.B., Hotamisligil, G.S., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17, 1498-1503.
Nieman, K.M., Romero, I.L., Van Houten, B., and Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 1831, 1533-1541.
Nikiteas, N.I., Tzanakis, N., Gazouli, M., Rallis, G., Daniilidis, K., Theodoropoulos, G., Kostakis, A., and Peros, G. (2005). Serum IL-6, TNFalpha and CRP levels in Greek colorectal cancer patients: prognostic implications. World J Gastroenterol 11, 1639-1643.
Oeckinghaus, A., and Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1, a000034.
Ohno, H., Shinoda, K., Spiegelman, B.M., and Kajimura, S. (2012). PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 395-404.
Okusaka, T., Okada, S., Ishii, H., Ikeda, M., Kosakamoto, H., and Yoshimori, M. (1998). Prognosis of advanced pancreatic cancer patients with reference to calorie intake. Nutr Cancer 32, 55-58.
Oldenburg, H.S., Rogy, M.A., Lazarus, D.D., Van Zee, K.J., Keeler, B.P., Chizzonite, R.A., Lowry, S.F., and Moldawer, L.L. (1993). Cachexia and the acute-phase protein response in inflammation are regulated by interleukin-6. Eur J Immunol 23, 1889-1894.
Ootsuka, Y., Blessing, W.W., Steiner, A.A., and Romanovsky, A.A. (2008). Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am J Physiol Regul Integr Comp Physiol 294, R1294-1303.
Owen, O.E., Holup, J.L., D'Alessio, D.A., Craig, E.S., Polansky, M., Smalley, K.J., Kavle, E.C., Bushman, M.C., Owen, L.R., Mozzoli, M.A., et al. (1987). A reappraisal of the caloric requirements of men. Am J Clin Nutr 46, 875-885.
Pamir, N., McMillen, T.S., Kaiyala, K.J., Schwartz, M.W., and LeBoeuf, R.C. (2009). Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology 150, 4124-4134.
Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C.S., Berenguer, A., Prats, N., Toll, A., Hueto, J.A., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45.
Penna, F., Costamagna, D., Pin, F., Camperi, A., Fanzani, A., Chiarpotto, E.M., Cavallini, G., Bonelli, G., Baccino, F.M., and Costelli, P. (2013). Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182, 1367-1378.
Petruzzelli, M., Schweiger, M., Schreiber, R., Campos-Olivas, R., Tsoli, M., Allen, J., Swarbrick, M., Rose-John, S., Rincon, M., Robertson, G., et al. (2014). A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20, 433-447.
Qi, J., Gong, J., Zhao, T., Zhao, J., Lam, P., Ye, J., Li, J.Z., Wu, J., Zhou, H.M., and Li, P. (2008). Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J 27, 1537-1548.
Rhoads, M.G., Kandarian, S.C., Pacelli, F., Doglietto, G.B., and Bossola, M. (2010). Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer 46, 191-197.
Roca-Rodriguez, M.M., El Bekay, R., Garrido-Sanchez, L., Gomez-Serrano, M., Coin-Araguez, L., Oliva-Olivera, W., Lhamyani, S., Clemente-Postigo, M., Garcia-Santos, E., de Luna Diaz, R., et al. (2015). Parathyroid Hormone-Related Protein, Human Adipose-Derived Stem Cells Adipogenic Capacity and Healthy Obesity. J Clin Endocrinol Metab 100, E826-835.
Rohm, M., Schafer, M., Laurent, V., Ustunel, B.E., Niopek, K., Algire, C., Hautzinger, O., Sijmonsma, T.P., Zota, A., Medrikova, D., et al. (2016). An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat Med 22, 1120-1130.
Ross, P.J., Ashley, S., Norton, A., Priest, K., Waters, J.S., Eisen, T., Smith, I.E., and O'Brien, M.E. (2004). Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 90, 1905-1911.
Rothwell, N.J., and Stock, M.J. (1986). Whither brown fat? Biosci Rep 6, 3-18.
Ryden, M., Agustsson, T., Laurencikiene, J., Britton, T., Sjolin, E., Isaksson, B., Permert, J., and Arner, P. (2008). Lipolysis--not inflammation, cell death, or lipogenesis--is involved in adipose tissue loss in cancer cachexia. Cancer 113, 1695-1704.
Sagar, G., Sah, R.P., Javeed, N., Dutta, S.K., Smyrk, T.C., Lau, J.S., Giorgadze, N., Tchkonia, T., Kirkland, J.L., Chari, S.T., et al. (2016). Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 65, 1165-1174.
Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S.H., and Goldberg, A.L. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412.
Saraf, M.K., Herndon, D.N., Porter, C., Toliver-Kinsky, T., Radhakrishnan, R., Chao, T., Chondronikola, M., and Sidossis, L.S. (2016). Morphological Changes in Subcutaneous White Adipose Tissue After Severe Burn Injury. J Burn Care Res 37, e96-103.
Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., and Sandri, M. (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296, C1248-1257.
Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1, 4.
Shellock, F.G., Riedinger, M.S., and Fishbein, M.C. (1986). Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 111, 82-85.
Singh, R., Parveen, M., Basgen, J.M., Fazel, S., Meshesha, M.F., Thames, E.C., Moore, B., Martinez, L., Howard, C.B., Vergnes, L., et al. (2016). Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 14, 78-92.
Sinno, M.H., Coquerel, Q., Boukhettala, N., Coeffier, M., Gallas, S., Terashi, M., Ibrahim, A., Breuille, D., Dechelotte, P., and Fetissov, S.O. (2010). Chemotherapy-induced anorexia is accompanied by activation of brain pathways signaling dehydration. Physiol Behav 101, 639-648.
Solheim, T.S., Blum, D., Fayers, P.M., Hjermstad, M.J., Stene, G.B., Strasser, F., and Kaasa, S. (2014). Weight loss, appetite loss and food intake in cancer patients with cancer cachexia: three peas in a pod? - analysis from a multicenter cross sectional study. Acta Oncol 53, 539-546.
Straub, R.H. (2012). Evolutionary medicine and chronic inflammatory state--known and new concepts in pathophysiology. J Mol Med (Berl) 90, 523-534.
Straub, R.H., and Schradin, C. (2016). Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health 2016, 37-51.
Tang, T., Zhang, J., Yin, J., Staszkiewicz, J., Gawronska-Kozak, B., Jung, D.Y., Ko, H.J., Ong, H., Kim, J.K., Mynatt, R., et al. (2010). Uncoupling of inflammation and insulin resistance by NF-kappaB in transgenic mice through elevated energy expenditure. J Biol Chem 285, 4637-4644.
Timper, K., Denson, J.L., Steculorum, S.M., Heilinger, C., Engstrom-Ruud, L., Wunderlich, C.M., Rose-John, S., Wunderlich, F.T., and Bruning, J.C. (2017). IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep 19, 267-280.
Tisdale, M.J. (2002). Cachexia in cancer patients. Nat Rev Cancer 2, 862-871.
Tisdale, M.J. (2009). Mechanisms of cancer cachexia. Physiol Rev 89, 381-410.
Tranmer, J.E., Heyland, D., Dudgeon, D., Groll, D., Squires-Graham, M., and Coulson, K. (2003). Measuring the symptom experience of seriously ill cancer and noncancer hospitalized patients near the end of life with the memorial symptom assessment scale. J Pain Symptom Manage 25, 420-429.
Tsoli, M., Moore, M., Burg, D., Painter, A., Taylor, R., Lockie, S.H., Turner, N., Warren, A., Cooney, G., Oldfield, B., et al. (2012). Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res 72, 4372-4382.
van Hall, G., Steensberg, A., Sacchetti, M., Fischer, C., Keller, C., Schjerling, P., Hiscock, N., Moller, K., Saltin, B., Febbraio, M.A., et al. (2003). Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88, 3005-3010.
van Marken Lichtenbelt, W.D., Vanhommerig, J.W., Smulders, N.M., Drossaerts, J.M., Kemerink, G.J., Bouvy, N.D., Schrauwen, P., and Teule, G.J. (2009). Cold-activated brown adipose tissue in healthy men. N Engl J Med 360, 1500-1508.
Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
Virtanen, K.A., Hallsten, K., Parkkola, R., Janatuinen, T., Lonnqvist, F., Viljanen, T., Ronnemaa, T., Knuuti, J., Huupponen, R., Lonnroth, P., et al. (2003). Differential effects of rosiglitazone and metformin on adipose tissue distribution and glucose uptake in type 2 diabetic subjects. Diabetes 52, 283-290.
Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N.J., Enerback, S., et al. (2009). Functional brown adipose tissue in healthy adults. N Engl J Med 360, 1518-1525.
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ 10, 45-65.
Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S.L., Ohlsson, C., and Jansson, J.O. (2002). Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8, 75-79.
Wang, F., Gao, S., Chen, F., Fu, Z., Yin, H., Lu, X., Yu, J., and Lu, C. (2014). Mammary fat of breast cancer: gene expression profiling and functional characterization. PLoS One 9, e109742.
Waning, D.L., Mohammad, K.S., Reiken, S., Xie, W., Andersson, D.C., John, S., Chiechi, A., Wright, L.E., Umanskaya, A., Niewolna, M., et al. (2015). Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21, 1262-1271.
Warren, S. (1932). the immediate cause of death in cancer. The American Journal of the Medical Sciences 184, 610-615.
Wigmore, S.J., Fearon, K.C., Maingay, J.P., and Ross, J.A. (1997). Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 92, 215-221.
Yadav, H., Quijano, C., Kamaraju, A.K., Gavrilova, O., Malek, R., Chen, W., Zerfas, P., Zhigang, D., Wright, E.C., Stuelten, C., et al. (2011). Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab 14, 67-79.
Zaki, M.H., Nemeth, J.A., and Trikha, M. (2004). CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int J Cancer 111, 592-595.
Zechner, R., Zimmermann, R., Eichmann, T.O., Kohlwein, S.D., Haemmerle, G., Lass, A., and Madeo, F. (2012). FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15, 279-291.
Zhang, G., Liu, Z., Ding, H., Zhou, Y., Doan, H.A., Sin, K.W.T., Zhu, Z.J., Flores, R., Wen, Y., Gong, X., et al. (2017). Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat Commun 8, 589.
Zhang, Q., Ma, B., Fischman, A.J., Tompkins, R.G., and Carter, E.A. (2008). Increased uncoupling protein 1 mRNA expression in mice brown adipose tissue after burn injury. J Burn Care Res 29, 358-362.
Zhao, J., Brault, J.J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., Lecker, S.H., and Goldberg, A.L. (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6, 472-483.
Zheng, L., Zhu, K., Jiao, H., Zhao, Z., Zhang, L., Liu, M., Deng, W., Chen, D., Yao, Z., and Xiao, G. (2013). PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition. Int J Biol Sci 9, 830-841.
Zhou, X., Wang, J.L., Lu, J., Song, Y., Kwak, K.S., Jiao, Q., Rosenfeld, R., Chen, Q., Boone, T., Simonet, W.S., et al. (2010). Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531-543.
Zoico, E., Darra, E., Rizzatti, V., Budui, S., Franceschetti, G., Mazzali, G., Rossi, A.P., Fantin, F., Menegazzi, M., Cinti, S., et al. (2016). Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment. Oncotarget 7, 20223-20235.
Zugmaier, G., Paik, S., Wilding, G., Knabbe, C., Bano, M., Lupu, R., Deschauer, B., Simpson, S., Dickson, R.B., and Lippman, M. (1991). Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51, 3590-3594.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71258-
dc.description.abstract白色脂肪細胞中,有部分細胞經特定刺激後,會增進粒線體表現去偶合蛋白(Uncoupling protein 1, UCP1)之能力,藉由UCP1蛋白破壞粒線體質子濃度梯度,使粒線體產熱並增加能量消耗,被稱為米色脂肪細胞;透過刺激而表現產熱特性的過程,被稱為褐化(browning),此等細胞與棕色脂肪細胞相似,擁有高數目之粒線體,產熱增加消耗能量之特性,被應用於抵抗肥胖相關代謝症狀,減少脂肪在體內累積所帶來之負面影響。
癌症惡質症(cancer-associated cachexia, CAC)指癌症病患之脂肪及肌肉等體組成不斷流失、體重下降之症狀,失去骨骼肌直接影響病患存活及生活品質,且流失體組成使癌症治療無法承受或產生抗性,有20%癌症病患因癌症惡質症導致死亡。在肺癌、胰臟癌、乳癌之小鼠模型及病患脂肪,發現UCP1之表現提升,暗示癌症具有調控脂肪產熱作用之能力,透過褐化之過程,加劇病患之能量耗損。
為確認癌症是否具有直接影響脂肪產熱基因之表現,收集胰臟癌(Panc-1、BxPC-3、HPAC、MIA-PaCa-2、Capan-1及Capan-2)、乳癌(MDA-MB-231及4T-1)細胞株之條件培養液(conditioned medium),並與細胞株3T3-L1或初代培養之小鼠皮下脂肪細胞(C57BL/6)培養,透過即時聚合酶鏈鎖反應分析生熱(Ucp1, Cidea, Dio2, Prdm16, Cox7a, and Cox8b)及脂肪分解(Atgl and Hsl)之基因表現、再以西方墨點法測量UCP1之蛋白質表現,以及油紅O染色、甘油分析脂肪細胞之油滴堆積。結果顯示,胰臟癌細胞株Capan-1條件培養液在3T3-L1、乳癌細胞株MDA-MB-231及4T-1之條件培養液在小鼠脂肪初代培養,能提高部分產熱基因表現,其UCP1之蛋白質表現經HPAC、Capan-1及MDA-MB-231條件培養液處理後較控制組表現量高,油紅O染色及甘油含量分析結果顯示各處理組與控制組並無顯著差異。
不同之細胞株引起脂肪細胞產熱基因表現之能力不同,而各細胞株中,胰臟癌細胞株HPAC、Capan-1,乳癌細胞株MDA-MB-231及4T-1具有提高部分產熱基因表現之能力,後續的試驗如能證明哪些癌細胞產生的因子會影響脂肪細胞褐化,可應用於減少癌症後期的惡質症對健康的威脅。
zh_TW
dc.description.abstractBeige adipocytes are a subset of white adipocytes which can dissipate heat under certain stimuli through mitochondrial uncoupling protein 1 (UCP1). Similar to brown adipocytes, high mitochondrial content and energy-consuming characteristic of brown/beige adipocytes have been regarded as a therapeutic target against obesity-related metabolic diseases.
Cancer-associated cachexia (CAC) is a wasting syndrome frequently found in advanced cancer patients with emaciation, muscle weakness and metabolic disorders. Switch of energy-depositing ‘‘bad fat’’ into energy-wasting ‘‘good fat’’ might address a lethal accomplice to cachectic patients. UCP1 expression can be detected in adipose tissues of several cancer models including lung, breast, and pancreatic cancers, suggesting that tumor cells exacerbate cancer progression by operating at adipose thermogenesis.
To verify whether the cancer cells can stimulate adipose thermogenesis-related gene expression, conditioned media from pancreatic (Panc-1, BxPC-3, HPAC, MIA-PaCa-2, Capan-1, and Capan-2) and breast (MDA-MB-231 and 4T-1) cancer cell lines were harvested and used to treat mouse cell line 3T3-L1 and primary subcutaneous adipocytes (C57BL/6). The real-time qPCR was conducted to evaluate the thermogenic (Ucp1, Cidea, Dio2, Prdm16, Cox7a, and Cox8b) and lipolysis-related (Atgl and Hsl) gene expression. UCP1 protein level was also determined by Western blotting. Oil-Red O and glycerol release assay were performed for lipid droplet contents and lipolysis. Our results showed that conditioned medium of pancreatic cell line Capan-1 for 3T3-L1, and conditioned medium from breast MDA-MB-231 and 4T-1 for primary adipocyte culture, moderately up-regulated thermogenic gene expression. UCP1 protein expression was higher in adipocytes treated with conditioned-medium of HPAC, Capan-1, or MDA-MB-231 compared to the control group. Analysis of Oil-Red O and glycerol release showed no difference by the different cancer cell derived conditioned media.
Taken together, cancer cells might possess differential effects on thermogenic gene expression in adipocytes. Among cell lines used in the study, pancreatic HPAC and Capan-1, breast cancer MDA-MB-231 and 4T-1 partially up-regulated thermogenic gene expression in adipocytes, suggesting the existence of factors in cancer conditioned medium involved in thermogenesis initiation in adipocytes. The identification of the factors that mediates the browning effect can be application in developing strategies for coping with cancer cachexia.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:01:24Z (GMT). No. of bitstreams: 1
ntu-107-R04626013-1.pdf: 7425179 bytes, checksum: 126174f03641b377499bf425872bd8d5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目 錄 IV
圖目錄 V
表目錄 VI
Introduction 1
Experimental design 15
Materials and methods 16
Results 23
Discussion 39
Reference 47
dc.language.isozh-TW
dc.title影響脂肪褐化及脂解之癌症細胞株篩選zh_TW
dc.titleScreening of potential cancer cell lines on white adipose browning and lipolysisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor沈湯龍(Tang-Long Shen)
dc.contributor.oralexamcommittee陳洵一(Shuen-Ei Chen),游玉祥(Yu-Hsiang Yu),林原佑(Yuan-Yu Lin)
dc.subject.keyword癌症惡質症,去偶合蛋白,產熱作用,脂肪褐化,zh_TW
dc.subject.keywordcancer cachexia,thermogenesis,uncoupling protein 1,white adipose browning,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201801905
dc.rights.note有償授權
dc.date.accepted2018-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
7.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved