請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳安宇 | |
| dc.contributor.author | Cheng-Wen Chen | en |
| dc.contributor.author | 陳政文 | zh_TW |
| dc.date.accessioned | 2021-06-17T05:01:17Z | - |
| dc.date.available | 2023-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-25 | |
| dc.identifier.citation | [1] 'IEEE 802.3BS Task Force,' [Online]. Available: http://www.ieee802.org/3/bs/public/15_03/ghiasi_3bs_01a_0315.pdf.
[2] T. Vivek, 'Equalization for High-Speed Serdes:System-level Comparison of Analog and Digital Techniques,' Broadcom Corporation, 10 August 2012. [Online]. Available: http://ewh.ieee.org/r5/denver/sscs/Presentations/2012_08_Telang.pdf. [3] 'Introduction of DPD in Wideband,' [Online]. Available: https://www.keysight.com/upload/cmc_upload/All/DPD_Wideband_webcast_archive.pdf. [4] 'Measured-40-Gbps-eye-diagrams,' [Online]. Available: https://www.researchgate.net/figure/Measured-40-Gb-s-eye-diagrams-a-before-equalization-b-after-equalization_fig1_224118020. [5] C.-H. Lin, A.-Y. Wu and F.-M. Li, 'High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems,' IEEE Trans. On Circuits And Systems, vol. 53, no. 9, pp. 911 - 915, 2006. [6] Z.J Mou. and P Duhamel, 'Fast FIR filtering: Algorithms and implementations,' Signal Processing, vol. 13, no. 4, pp. 377-384, 1987. [7] An-Yeu Wu, K.J. Ray Liu and A. Raghupathy, 'System architecture of an adaptive reconfigurable DSP computing engine,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 1, pp. 54 - 73, 1998. [8] K. R. Liu, A.-Y. Wu, A. Raghupathy and J. Chen, 'Algorithm-based low-power and high-performance multimedia signal processing,' Proceedings of the IEEE, vol. 86, no. 6, pp. 1155 - 1202, 1998. [9] Cheng-Shing Wu and An-Yeu Wu , 'A novel multi-rate adaptive FIR filtering algorithm and structure,' in IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP), Phoenix, AZ, USA, 1999. [10] An-Yeu Wu and Cheng-Shing Wu, 'Transform-domain delayed LMS algorithm and architecture,' in ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Monterey, CA, USA, 1998. [11] An-Yeu Wu and K.J. Ray Liu, 'Algorithm-based low-power transform coding architectures: the multirate approach,' IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 4, pp. 707-718, 1998. [12] O’Shea, Timothy and Jakob Hoydis, 'An Introduction to Deep Learning for the Physical Layer,' IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, 2017. [13] Y. Khawam, L. Albasha and H. Mir, 'Accurate and low complexity polynomial and neural network models for PA digital pre-distortion,' in 2016 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, 2016. [14] Taijun Liu, S. Boumaiza and F. M. Ghannouchi, 'Dynamic behavioral modeling of 3G power amplifiers using real-valued timedelay neural networks,' IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1025-1033, 2004. [15] Fadlullah, Zubair and e. al, 'State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems,' IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2432-2455, 2017. [16] Behzad Razavi, 'The Decision-Feedback Equalizer [A Circuit for All Seasons],' IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 13-132, 2017. [17] 'Decision Feedback Equalizer,' [Online]. Available: https://archive.cnx.org/contents/c6a7dd4e-99e4-429b-ae39-675cda188928@4/decision-feedback-equalizer. [18] V. SHVYDUN, A. B. Healey and C. Palusa, 'Integrated PAM4/NRZ N-Way Parallel Digital Unrolled Decision Feedback Equalizer (DFE)'. USA Patent US20150256363A1, 10 September 2015. [19] Magnus Bache, 'Digital Predistortion Linearization of Power Amplifier for X-band Radar System,' Norwegian University of Science and Technology, 2015. [20] A.A.M. Saleh, 'Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers,' IEEE Transactions on Communications, vol. 29, no. 11, pp. 1715 - 1720, 1981. [21] A. Ghorban and M. Sheikhan, 'The effect of solid state power amplifiers (SSPAs) nonlinearities on MPSK and M-QAM signal transmission,' in International Conference on Digital Processing of Signals in Communications, Loughborough, UK, 1991. [22] 'Traveling-wave Tube Amplifier,' [Online]. Available: https://alamy.com/stock-photo-elements-of-the-traveling-wave-tube-twt-used-to-amplify-microwave-24069062.html. [23] Xiaowen Feng, 'Efficient baseband digital predistortion techniques for linearizing power amplifier by taking into account nonlinear memory effect,' 2015. [Online]. Available: https://hal.archives-ouvertes.fr/tel-01206266/document. [24] 'Matlab: Memoryless Nonlinearity,' [Online]. Available: https://mathworks.com/help/comm/ref/memorylessnonlinearity.html. [25] J. Liebetreu, “Proposed System Impairment Models,” 2000. [26] P. Jantunen, 'Modelling of Nonlinear Power Amplifiers for Wireless Communications,' 2004. [Online]. Available: http://legacy.spa.aalto.fi/sig-legacy/spit/publications/2004t1.pdf. [27] T. Liu, S. Boumaiza and F. Ghannouchi, 'Augmented hammerstein predistorter for linearization of broad-band wireless transmitters,' Microwave Theory and Techniques, IEEE Transactions, vol. 54, no. 4, pp. 1340-1349, 2006. [28] Tomas Gotthans, Geneviève Baudoin and Amadou Mbaye, 'Digital Predistortion With Advance/Delay Neural Network and Comparison With Volterra Derived Models,' in Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington DC, 2014. [29] N. Shanbhag and K. Parhi, 'Pipelined adaptive DFE architectures using relaxed look-ahead,' IEEE Trans. Signal Processing, vol. 43, no. 1, p. 1368–1385, 1995. [30] Jaderberg, Max, Karen Simonyan and Andrew Zisserman, 'Spatial Transformer Networks,' Advances in Neural Information Processing Systems, pp. 2017-2025, 2015. [31] James Peroulas, 'Digital Predistortion Using Machine Learning Algorithms,' 2016. [Online]. Available: http://cs229.stanford.edu/proj2016/poster/Peroulas-DigitalPredistortion-poster.pdf. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71256 | - |
| dc.description.abstract | 在通訊系統中,通道等化與數位預失真在傳輸端與接收端各占很重要的腳色。隨著半導體廠商技術不斷進步,晶片往往需要更高的頻寬與速度。在晶片到晶片的背板有線傳輸當中,序列與解序列器(serdes)的設計,其速度必須跟上高性能處理器與高儲存容量固態硬碟的速度要求。然而,在背板上的銅導線有線傳輸存在像是符號間干擾(inter-symbol interference)的不理想效應,會干擾傳輸的訊號並造成效能的下降。一般來說,序列與解序列器(serdes)的設計包含等化器來消除不理想效應。迴饋決策等化器(decision feedback equalizer)是平衡效能與成本後,用來解決符號間干擾的理想候選者。然而,即便迴饋決策等化器是很有效率的架構,在下一世代有線通訊56G序列與解序列器的規範中(IEEE 802.3BS),要展開迴饋決策等化器的迴饋迴圈是一大挑戰。因此在這篇論文中,我們著重於在維持有效的符號間干擾消除的同時,設計一個使用在高速應用介面的平行展開的迴饋決策等化器架構。
此外,功率放大器在傳輸端會造成非線性的信號失真,因此數位預失真是一個廣泛運用在傳輸端用來消除失真的重要元件之一。而許多產品為了低功耗的設計,功率放大器往往會選擇更多區間操作在非線性的失真區域。傳統方法的數位預失真很難去消除嚴重的非線性失真,進而造成效能上的損失。而近年來機器學習在諸多領域革命性的發展,將其運用在數位預失真上得到很好的效果。然而,其卻需要可觀的訓練時間,因此在這篇論文中,在神經網路輔助之數位預失真加上轉換層架構,在維持效能的同時減少訓練所需時間。 在這篇論文中,我們先介紹傳統用來消除符號間干擾的方法並分析,接著,透過展開迴圈的技巧設計迴饋決策等化器迴圈的展開架構、利用演算法化簡的方式改良前饋濾波器展開架構,降低其複雜度。其次,利用轉換層的方式讓神經網路輔助之數位預失真減少訓練時間。最後,我們總結本研究與未來發展方向。 | zh_TW |
| dc.description.abstract | Channel equalization and digital predistortion (DPD) play important roles at the receiver and transmitter in communication systems. Since the advance of semiconductor technology, chips require higher bandwidth and transmission speed during serdes design of chip-to-chip wired communication in backplane for the sake of keeping abreast of high-performance calculation and high-density storage. However, the copper wire in the backplane exists distortions such as inter-symbol interference (ISI), which severely interferes the transmitted signals and causes performance degradation. Conventionally, the serdes design includes the equalizer to eliminate the impairments, and a decision feedback equalizer (DFE) is an ideal candidate to effectively suppress the ISI after trade-off performance, cost, and latency issues. Even if DFE is an efficient scheme, its architecture suffers from challenges of unfolding the feedback loop, when increasing the transmission rate in the next generation 56Gbps serdes design standards (IEEE 802.3BS) in wired communication systems. Therefore, in this thesis, we focus on how to design a parallel (N-way) architecture of DFE for high-speed application while maintaining effective performance of eliminating ISI distortion.
Besides, the power amplifier also induces nonlinear distortion at the transmitter and DPD is essential in transmitter design to eliminate the distortion. For the purpose of low-power saving design, the smaller back-off range is applied, which causes severe nonlinear distortion when signals operate in compressed region of power amplifier. However, traditional methods of DPD are hard to combat with severe nonlinear distortions and result in considerable performance degradation. Thanks to the evolutionary development in the fields of machine learning, many arts of neural network (NN) based DPD have developed. While the NN-based model provides good performance in power amplifier DPD, this model requires considerable time for training to reach convergence. Therefore, in this thesis, a low training overhead NN-based DPD with transformer layer architecture (TLA) is introduced, which reduce the training time while maintaining good error performance. In this thesis, we first introduce conventional methods of ISI equalization and analyze the trade-off. Next, through loop-unrolling techniques and simplifying the algorithm of feed-forward filter (FFF), we can design a parallel and low-complexity architecture of DFE for high-speed demands. Based on adding TLA to conventional NN-based DPD, we further propose a low training overhead architecture. Finally, we conclude the research and possible future work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T05:01:17Z (GMT). No. of bitstreams: 1 ntu-107-R05943048-1.pdf: 5598381 bytes, checksum: a7e587b155d0f6dedf6e7539bc40b4e6 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 v
摘要 vii Abstract ix Content xi List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Impairments in Communication 2 1.2 Channel Equalization and Digital Predistortion 4 1.3 Motivations and Contributions 6 1.4 Thesis Organization 9 Chapter 2 Review of Algorithm for Channel Equalization and Digital Predistortion 10 2.1 Channel Equalization for Inter-Symbol Interference Effect 11 2.1.1 Decision Feedback Equalizer (DFE) 11 2.1.2 Multi-Rate FIR Filter 13 2.1.3 Unrolled Architecture for N-Way Feedback Loop 20 2.2 Digital Predistortion for Nonlinear Power Amplifier 21 2.2.1 Concept of Digital Predistortion 21 2.2.2 Modeling Distortions of Power Amplifier 22 2.2.3 Neural Network (NN) for Digital Predistortion 26 2.3 Summary 27 Chapter 3 Channel Equalization: Low-Complexity Architecture of N-Way Multi-Rate Feedforward Filter (FFF) 28 3.1 Next Generation Serdes Standards 30 3.2 Channel Analysis 32 3.3 Low-Complexity N-Way Multi-Rate FFF 36 3.3.1 Architecture of N-Way Multi-Rate FFF 37 3.3.2 Architecture of Combined N-Way Multi-Rate FFF 42 3.4 Simulation Results 44 Chapter 4 Channel Equalization: High-Speed Architecture of N-Way Loop-Unrolled Feedback Filter (FBF) 47 4.1 Problem of Architecture for N-Way FBF 49 4.2 N-Way Loop-Unrolled 4-PAM 1-Tap FBF 52 4.3 N-Way Loop-Unrolled 2-PAM 2-Tap FBF 54 4.4 N-Way Loop-Unrolled 4-PAM 2-Tap FBF 58 4.5 Simulation Results 59 4.6 Algorithm for N-Way Weight Updating 61 Chapter 5 Digital Predistortion: Low Training Overhead NN-based Digital Predistortion with Transformer Layer Architecture (TLA) 62 5.1 Application Scenario for Digital Predistortion: Offline Calibration and Online Updating 63 5.2 Distortions of Power Amplifier 64 5.3 Problem of Conventional NN-based Digital Predistortion 66 5.4 Proposed NN-based Digital Predistortion with TLA 67 5.5 Simulation Results 70 5.5.1 Simulation Setup 70 5.5.2 Analysis of Results 73 5.6 Summary 80 Chapter 6 Conclusions 82 6.1 Contributions 82 6.2 Future Works 83 References 84 | |
| dc.language.iso | en | |
| dc.subject | 通道等化 | zh_TW |
| dc.subject | 多速率 | zh_TW |
| dc.subject | 平行架構 | zh_TW |
| dc.subject | 數位預失真 | zh_TW |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | 轉換層 | zh_TW |
| dc.subject | neural network | en |
| dc.subject | multi-rate | en |
| dc.subject | channel equalization | en |
| dc.subject | parallel architecture | en |
| dc.subject | transformer layer | en |
| dc.subject | digital predistortion | en |
| dc.title | 適用於通訊系統下通道等化與數位預失真之高效能數位訊號處理架構 | zh_TW |
| dc.title | High-Performance DSP Architectures of Channel Equalization and Digital Predistortion for Communication Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳仁銘,曹恆偉,楊家驤 | |
| dc.subject.keyword | 通道等化,多速率,平行架構,數位預失真,神經網路,轉換層, | zh_TW |
| dc.subject.keyword | channel equalization,multi-rate,parallel architecture,digital predistortion,neural network,transformer layer, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201801831 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
