Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71242
Title: 使用距離感測器實作三維人臉識別與重建
3D Face Identification and Reconstruction with Range Sensor
Authors: Tsun-An Hsieh
謝尊安
Advisor: 傅楸善
Keyword: 三維臉部辨識,三維臉部生成,卷積類神經網路,遷移學習,深度學習,
3D Face Identification,3D Face Generation,Convolutional Neural Networks,Transfer Learning,Deep Learning,
Publication Year : 2018
Degree: 碩士
Abstract: 本論文提出一個基於卷積類神經網路(Convolutional Neural Network)的方法進行三維臉部模型生成以用於資料擴增並且實現三維臉部識別的方法。過去幾年來類神經網路在二維臉部辨識上取得重大成就,例如VGG (Visual Geometry Group) Face、Inception和ResNet (Residual Network)。這些網路有含有大量參數必須由非線性最佳化的方法來調整,因此就需要大量的訓練資料來調整。2017年開始,蘋果電腦推出iPhone X智慧型手機,其中FaceID技術把人臉識別技術由二維推向三維,三維人臉辨識成為風潮。然而要訓練三維人臉辨識並不容易,首先訓練資料非常稀少,最大的三維人臉資料集中,也只有數千張人臉的深度圖,並且只有數百個個體。對此,本論文中使用遷移學習(Transfer Learning)技術來應對這個困難,並且藉由生成三維臉部模型增加訓練資料的歧異度與數量以增強三維臉部識別效能。
A method of data augmentation for 3D face model and using it for 3D face identification is proposed in this thesis. In the past few years, researchers have achieved significant progress on 2D face identification and verification through neural network approaches, such as VGG (Visual Geometry Group) Face, GoogleNet Inception, and ResNet (Residual Network). Since there are so many hyper parameters that need to be optimized in neural networks, large data must be provided for training. In 2017, FaceID was proposed by Apple Inc. Face identification has been scaled up from 2D to 3D. However, training a 3D face classifier is difficult. 3D face datasets nowadays are so small that even a large set of 3D face (Bosphorus 3D Face Dataset) contains only 4,666 faces of 105 identities. In order to solve the lack of data, we use transfer learning [13], and several data augmentation methods by generating face mesh from different views to make the classifier more robust and discriminative.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71242
DOI: 10.6342/NTU201801902
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
4.33 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved